Procedure for catalytic studies
2 (a) D. E. Hibbs, M. B. Hursthouse, C. Jones and N. A. Smithies, Chem.
Commun., 1998, 869; (b) R. J. Baker, R. D. Farley, C. Jones, M. Kloth
and D. M. Murphy, Chem. Commun., 2002, 1196; (c) N. Marion, E.
C. Escudero-Ada´n, J. Benet-Buchholz, E. D. Stevens, L. Fensterbank,
M. Malacria and S. P. Nolan, Organometallics, 2007, 26, 3256; (d) B.
Quillian, P. Wei, C. S. Wannere, P. v. R. Schleyer and G. H. Robinson,
J. Am. Chem. Soc., 2009, 131, 3168; (e) S. J. Bonyhady, D. Collis, G.
Frenking, N. Holzmann, C. Jones and A. Stasch, Nat. Chem., 2010, 2,
865.
Samples for catalytic dehydrogenation were prepared as follows; a
stock solution of [Ni(IMes)2] (50 mL, 0.5 mg mL-1, d8-toluene) was
added to an NMR tube containing a stock solution of 5 or 6 (500
mL, 1.0 mg mL-1, d8-toluene). 1H NMR spectra were recorded on
a Bruker Avance III 400 spectrometer (400.13 MHz).
3 C. D. Abernethy, M. L. Cole and C. Jones, Organometallics, 2000, 19,
4852.
X-ray structure determination
4 (a) S. G. Alexander, M. L. Cole, M. Hilder, J. C. Morris and J. B.
Patrick, Dalton Trans., 2008, 6361; (b) S. G. Alexander and M. L. Cole,
Eur. J. Inorg. Chem., 2008, 4493; (c) S. G. Alexander, M. L. Cole, C. M.
Forsyth, S. K. Furfari and K. Konstas, Dalton Trans., 2009, 2326.
5 S. G. Alexander, M. L. Cole, S. K. Furfari and M. Kloth, Dalton Trans.,
2009, 2909.
6 S. G. Alexander, M. L. Cole and C. M. Forsyth, Chem.–Eur. J., 2009,
15, 9201.
7 M. L. Cole, S. K. Furfari and M. Kloth, J. Organomet. Chem., 2009,
694, 2934.
8 (a) M. L. H. Green, P. Mountford, G. J. Smout and S. R. Speel,
Polyhedron, 1990, 9, 2763; (b) M. Wilkinson and I. J. Worral, J.
Organomet. Chem., 1975, 93, 39.
Crystalline samples of 1 and 4 were mounted on glass fibres in
silicone oil at -100(2) ◦C and -123(2) ◦C, respectively. A summary
of crystallographic data can be found in Table 1. Data were
collected using graphite monochromated Mo-Ka X-ray radiation
˚
(l = 0.71073 A) on a Bruker Apex II CCD diffractometer, and
data were corrected for absorption by empirical methods using
SADABS. Structural solution and refinement was carried out
using the SHELX33 suite of programs and the interface X-Seed.34
Hydrogen atoms were refined in calculated positions (riding
model).
9 R. J. Baker, H. Bettentrup and C. Jones, Eur. J. Inorg. Chem., 2003,
2446.
10 Unpublished data, M. L. Cole, M. Kloth, University of New South
Variata
Wales.
11 As determined by a survey of the Cambridge Structural Database v.
5.32 with updates for February 2011 and May 2011.
12 S. D. Nogai and H. Schmidbaur, Organometallics, 2004, 23, 5877.
13 M. L. Cole, C. Jones and M. Kloth, Inorg. Chem., 2005, 44, 4909.
14 A. J. Arduengo, J. R. Goerlich and W. J. Marshall, J. Am. Chem. Soc.,
1995, 117, 11027.
Data for compound 1 were poor. Compound 1 undergoes a
destructive phase change at -123(2) ◦C leading to data collection
at the higher temperature of -100(2) ◦C. Unlike the IMes ligand
coordinated to Ga(1), the IMes ligand coordinated to Ga(2) (N(3),
N(4), C(22)–C(42)) exhibits a significant number of prolate and
oblate atoms across the two aryl rings and imidazole heterocycle.
Attempts to model two separate occupancies for (i) each ring sep-
arately, (ii) rings in combination, or (iii) together as two separate
IMes occupancies, resulted in unacceptable thermal parameters
(non positive definite). Only one occupancy has been refined for
the second IMes with the exception of meta-carbon C(27) and
ortho-methyl C(31), which were successfully modelled over two
sites with occupancies of 83 : 17% (a:b) (highest occupancy shown
in Fig. 1). The remaining suspected ‘disordered’ atoms (C(22)–
C(26), C(28)–C(30), C(32), C(33), N(1), N(2)) have been refined
using ISOR 0.05 restraints (isotropic displacement parameters).
15 M. L. Cole, C. Jones and P. C. Junk, New J. Chem., 2002, 262, 1296.
16 (a) C. U. Doriat, M. Friesen, E. Baum, A. Ecker and H. Schno¨ckel,
H., Angew. Chem., Int. Ed. Engl., 1997, 36, 1969; (b) A. Schnepf, E.
Weckert, G. Linti and H. Schno¨ckel, H., Angew. Chem., Int. Ed., 1999,
38, 3381; (c) H. Schno¨ckel and A. Schnepf, Adv. Organomet. Chem.,
2001, 47, 235.
17 M. L. Cole, A. J. Davies and C. Jones, J. Chem. Soc., Dalton Trans.,
2001, 2451.
18 N. N. Greenwood and A. Storr, J. Chem. Soc., 1965, 3426.
19 H. Schmidbaur, W. Findeiss and E. Gast, Angew. Chem., 1965, 77, 170.
20 J. F. Janik, R. A. Baldwin, R. L. Wells, W. T. Pennington, G. L. Schimek,
A. L. Rheingold and L. M. Liable-Sands, Organometallics, 1996, 15,
5385.
21 F. Dornhaus, S. Scholz, I. Sanger, M. Bolte, M. Wagner and H.-W.
Lerner, Z. Anorg. Allg. Chem., 2009, 635, 2263.
22 Q. M. Cheng, O. Stark, K. Merz, M. Winter and R. A. Fischer, J.
Chem. Soc., Dalton Trans., 2002, 2933.
23 B. Luo, V. G. Young and W. L. Gladfelter, Chem. Commun., 1999, 123.
24 R. J. Wehmschulte, J. J. Ellison, K. Ruhlandt-Senge and P. P. Power,
Inorg. Chem., 1994, 33, 6300.
25 L. Grocholl, S. A. Cullison, J. Wang, D. C. Swenson and E. G. Gillan,
Inorg. Chem., 2002, 41, 2920.
26 R. J. Keaton, J. M. Blacquiere and R. T. Baker, J. Am. Chem. Soc.,
2007, 129, 1844.
27 H.-J. Himmel, P. Roquette, H. Wadepohl, S. Leingang, O. Ciobanu, F.
Allouti and M. Enders, Eur. J. Inorg. Chem., 2008, 5482.
28 A. J. Arduengo, S. F. Gamper, J. C. Calabrese and F. Davidson, J. Am.
Chem. Soc., 1994, 116, 4391.
-3
˚
The largest residual hole and peak of electron density (-2.18 e A
-3
˚
˚
˚
and 1.33 e A ) are located 0.17 A and 0.70 A from meta-carbon
C(38). Attempts to model disorder of this atom failed repeatedly.
Compound 4 crystallises with two unique molecules in the
asymmetric unit. No additional space group symmetry elements
were identified. The bonding parameters for both molecules are
comparable. Parameters for the lowest numbered molecule have
been used in the discussion throughout this article and this
molecule has been used in Fig. 2.
29 M. K. Denk and J. M. Rodezno, J. Organomet. Chem., 2000, 608,
122.
Acknowledgements
30 M. V. Baker, B. W. Skelton, A. H. White and C. C. Williams,
Organometallics, 2002, 21, 2674.
31 A. J. Arduengo, H. V. R. Dias, R. L. Harlow and M. Kline, J. Am.
Chem. Soc., 1992, 114, 5530.
32 For further information on this technique see: J. A. Calladine, O. Torres,
M. Anstey, G. E. Ball, R. G. Bergman, J. Curley, S. B. Duckett, M. W.
George, A. I. Gilson, D. J. Lawes, R. N. Perutz, X.-Z. Sun and K. P. C.
Vollhardt, Chem. Sci., 2010, 1, 622 and references therein.
33 G. M. Sheldrick, SHELXL-97 and XS-97, University of Go¨ttingen,
Germany, 1997.
The authors would like to thank the Australian Research Council
(DP110104759 and DP0881692) for financial support of this
research, and the Australian Commonwealth for the provision
of an Australian Postgraduate Award (AIM).
References
1 A. J. Arduengo, H. V. R. Dias, J. C. Calabrese and F. Davidson, J. Am.
Chem. Soc., 1992, 114, 9724.
34 L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.
952 | Dalton Trans., 2012, 41, 946–952
This journal is
The Royal Society of Chemistry 2012
©