Organic Letters
Letter
ORCID
which may be attributed due to higher acidity of the phenolic
group of 1h (Scheme 5c).
Notes
On the basis of previous literature reports19 and our
mechanistic studies, a plausible catalyst cycle is proposed in
Scheme 6. In the presence of CsOAc, an active catalyst A is
The authors declare no competing financial interest.
Scheme 6. Plausible Mechanism
ACKNOWLEDGMENTS
■
M.S.M. gratefully acknowledges Council of Scientific &
Industrial Research, India (Sanction No. 02(0322)/17/EMR-
II) and SERB, Department of Science and Technology, New
Delhi, India (Sanction No. EMR/2015/000994) for funding.
S.D. sincerely thanks IIT Kharagpur and SSB thanks CSIR,
India, for fellowships.
REFERENCES
■
(1) (a) Lin, J.-H. Phytochemistry 1989, 28, 621. (b) Stefanuti, I.;
Smith, S. A.; Taylor, R. J. K. Tetrahedron Lett. 2000, 41, 3735.
(c) Kohno, J.; Koguchi, Y.; Nishio, M.; Nakao, K.; Kuroda, M.;
Shimizu, R.; Ohnuki, T.; Komatsubara, S. J. Org. Chem. 2000, 65, 990.
(d) Nicolaou, K. C.; Kim, D. W.; Baati, R. Angew. Chem., Int. Ed.
2002, 41, 3701. (e) Yet, L. Chem. Rev. 2003, 103, 4283. (f) Wang, X.;
Porco, J. A., Jr. J. Am. Chem. Soc. 2003, 125, 6040. (g) Shen, R.; Lin,
C. T.; Bowman, E. J.; Bowman, B. J.; Porco, J. A., Jr. J. Am. Chem. Soc.
2003, 125, 7889. (h) Tan, N.-H.; Zhou, J. Chem. Rev. 2006, 106, 840.
(i) He, G.; Wang, J.; Ma, D. Org. Lett. 2007, 9, 1367. (j) Yang, L.;
Deng, G.; Wang, D.-X.; Huang, Z.-T.; Zhu, J.-P.; Wang, M.-X. Org.
Lett. 2007, 9, 1387. (k) Smith, A. B., III; Duffey, M. O.; Basu, K.;
Walsh, S. P.; Suennemann, H. W.; Frohn, M. J. Am. Chem. Soc. 2008,
130, 422. (l) Chakor, N. S.; Musso, L.; Dallavalle, S. J. Org. Chem.
2009, 74, 844. (m) Prabhakar Reddy, D.; Zhang, N.; Yu, Z.; Wang,
Z.; He, Y. J. Org. Chem. 2017, 82, 11262. (n) Fong, H. K. H.; Brunel,
J. M.; Longeon, A.; Bourguet-Kondracki, M.-L.; Barker, D.; Copp, B.
R. Org. Biomol. Chem. 2017, 15, 6194.
(2) (a) Dumdei, E.; Andersen, R. J. J. Nat. Prod. 1993, 56, 792.
(b) Faulkner, D. J. Nat. Prod. Rep. 1999, 16, 155. (c) Faulkner, D.
Nat. Prod. Rep. 2001, 18, 1. (d) Feutrill, J. T.; Lilly, M. J.; Rizzacasa,
M. A. Org. Lett. 2002, 4, 525. (e) Parsons, T. B.; Spencer, N.; Tsang,
C. W.; Grainger, R. S. Chem. Commun. 2013, 49, 2296. (f) Ahmad, S.;
Choudhury, S.; Khan, F. A. Tetrahedron 2015, 71, 4192.
(3) (a) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128,
4592. (b) Zheng, Y.; Li, X.; Ren, C.; Zhang-Negrerie, D.; Du, Y.;
Zhao, K. J. Org. Chem. 2012, 77, 10353. (c) Lei, C.-H.; Wang, D.-X.;
Zhao, L.; Zhu, J.; Wang, M.-X. J. Am. Chem. Soc. 2013, 135, 4708.
(d) Kikuchi, J.; Momiyama, N.; Terada, M. Org. Lett. 2016, 18, 2521.
(e) Takamoto, K.; Ohno, S.; Hyogo, N.; Fujioka, H.; Arisawa, M. J.
Org. Chem. 2017, 82, 8733. (f) Kumar, S. V.; Acharya, A.; Ila, H. J.
Org. Chem. 2018, 83, 6607. (g) Zhao, M.-N.; Ren, Z.-H.; Yang, D.-S.;
Guan, Z.-H. Org. Lett. 2018, 20, 1287.
(4) (a) Willans, C. E.; Mulders, J. M. C. A.; de Vries, J. G.; de Vries,
A. H. M. J. Organomet. Chem. 2003, 687, 494. (b) Roff, G. J.; Lloyd,
R. C.; Turner, N. J. J. Am. Chem. Soc. 2004, 126, 4098. (c) Gou, Q.;
Deng, B.; Zhang, H.; Qin, J. Org. Lett. 2013, 15, 4604. (d) Wang, M.;
Zhang, X.; Zhuang, Y.-X.; Xu, Y.-H.; Loh, T.-P. J. Am. Chem. Soc.
2015, 137, 1341.
(5) (a) Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.;
Studer, M. Adv. Synth. Catal. 2003, 345, 103. (b) Renaud, J. L.;
Dupau, P.; Hay, A.-E.; Guingouain, M.; Dixneuf, P. H.; Bruneau, C.
Adv. Synth. Catal. 2003, 345, 230. (c) Enthaler, S.; Hagemann, B.;
Junge, K.; Erre, G.; Beller, M. Eur. J. Org. Chem. 2006, 2006, 2912.
(d) Abrams, M. L.; Foarta, F.; Landis, C. R. J. Am. Chem. Soc. 2014,
136, 14583. (e) Magre, M.; Pamies, O.; Dieguez, M. ACS Catal. 2016,
6, 5186. (f) Llopis, Q.; Guillamot, G.; Phansavath, P.;
Ratovelomanana-Vidal, V. Org. Lett. 2017, 19, 6428. (g) Zhang, J.;
Liu, C.; Wang, X.; Chen, J.; Zhang, Z.; Zhang, W. Chem. Commun.
2018, 54, 6024. (h) Alix, A.; Lalli, C.; Retailleau, P.; Masson, G. J. Am.
Chem. Soc. 2012, 134, 10389.
generated which undergoes C−H metalation with salicylalde-
hyde 1a to form a five-membered rhodacycle B through the
directed C−H functionalization. The coordination of 2a with
the intermediate B generates intermediate C, which experi-
ences a N−O bond cleavage with the concomitant formation
of nitrido intermediate D. Subsequent migration/insertion of
nitrene into the Rh−C bond generated a tripodal intermediate
7 where the structural rigidity of oxazole was retained. LC−MS
analysis of the crude reaction mixture also supports the
formation of intermediate 7 (Scheme 5d),18 which upon
protonolysis regenerates catalyst A and offers the desired Z-
enamide product 3a, stabilized by the intramolecular hydrogen
bonding.
In conclusion, we have developed a phenol-directed
umpolung reactivity of aldehydes using Cp*Rh(III)-catalyzed
C−H functionalization to achieve stereospecific acyclic Z-
enamides. The polarity of N−O bond of isoxazoles have been
utilized as a masked electrophile under our reaction conditions
to mark this a complete step- and atom-economic strategy.
Silver-free reaction conditions leads our method toward a
greener approach. A variety of salicylaldehydes and isoxazoles
have successfully responded to make this method versatile. The
existence of intermediate, detected by LC−MS analysis,
justifies the final step of the catalytic cycle. We hope that
our method of stereospecific Z-enamide synthesis will be
instrumental for further applications.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, spectroscopic data, and NMR
spectra of compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
■
D
Org. Lett. XXXX, XXX, XXX−XXX