Chemistry Letters 2000
367
(
1980). b) W. Zhang, J. L. Loebach, S. R. Wilson, and E. N.
Jacobsen, J. Am. Chem. Soc., 112, 2801 (1990). c) R. Irie, K. Noda,
Y. Ito, N. Matsumoto, and T. Katsuki, Tetrahedron Lett., 31, 7345
(
1990). d) S. Juliá, J. Masana, and J. C. Vega, Angew. Chem., Int.
Ed. Engl., 19, 929 (1980). e) D. Yang, Y.-C. Yip, M.-W. Tang, M.-
K. Wong, J.-H. Zheng, and K.-K. Cheung, J. Am. Chem. Soc., 118,
4
1
91 (1996). f) Y. Tu, Z.-X. Wang, and Y. Shi, J. Am. Chem. Soc.,
18, 9806 (1996). g) D. Enders, J. Zhu, and G. Raabe, Angew.
Chem., Int. Ed. Engl., 35, 1725 (1996). h) M. Bougauchi, S.
Watanabe, T. Arai, H. Sasaki, and M. Shibasaki, J. Am. Chem. Soc.,
1
19, 2329 (1997). i) C. L. Elston, R. F. W. Jackson, S. J. F.
MacDonald, and P. J. Murray, Angew. Chem., Int. Ed. Engl., 36, 410
1997). j) B. Lygo and P. G. Wainwright, Tetrahedron Lett., 39,
599 (1998). k) S. Watanabe, T. Arai, H. Sasaki, M. Bougauchi,
(
1
and M. Shibasaki, J. Org. Chem., 63, 8090 (1998).
3
4
For reviews on Juliá-Colonna epoxidation see: a) M. E. Lasterra-
Sanchez and S. M. Roberts, Curr. Org. Chem., 1, 187 (1997). b) S.
Ebrahim and M. Wills, Tetrahedron: Asymmetry, 8, 3163 (1997). c)
L. Pu, Tetrahedron: Asymmetry, 9, 1457 (1998).
a) J. R. Flisak, K. J. Gombatz, M. M. Holmes, A. A. Jamas, I.
Lantos, W. L. Mendelson, V. J. Navack, J. J. Remich, and L.
Snyder, J. Org. Chem., 58, 6247 (1993). b) R. J. J. Nel, P. S. van
Heerden, H. van Rensburg, and D. Ferreira Tetrahedron Lett., 39,
5
623 (1998). c) B. M. Adger, J. V. Barkley, S. Bergeron, M. W.
Cappi, B. E. Flowerdew, M. P. Jackson, R. McCague, T. C. Nugent,
and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 1997, 3501. d)
M. W. Cappi, W.-P. Chen, R. W. Flood, Y.-W. Liao, S. M. Roberts,
J. Skidmore, J. A. Smith, and N. M. Williamson, Chem. Commun.,
1
998, 1159. e) W.-p. Chen and S. M. Roberts, J. Chem. Soc., Perkin
Trans. 1, 1999, 1043.
IR measurements indicated the homogeneous catalyst to be hel-
5
a) K. Ohkata, J. Kimura, Y. Shinohara, R. Takagi, and Y. Hiraga,
Chem. Commun., 1996, 2411. b) R. Takagi, J. Kimura, Y.
Shinohara, Y. Ohba, K. Takezono, Y. Hiraga, S. Kojima, and K.
Ohkata, J. Chem. Soc., Perkin Trans. 1, 1998, 689.
S. Itsuno, M. Sakakura, and K. Ito, J. Org. Chem., 53, 6047 (1990).
P. A. Bentley, M. W. Cappi, R. W. Flood, S. M. Robert, and J. A.
Smith, Tetrahedron Lett., 39, 9297 (1998).
a) S. Juliá, J. Gulixer, J. Masana. J. Rocas, S. Colonna, R.
Annuziata, and H. Molinari, J. Chem. Soc., Perkin Trans. 1, 1982,
1317. b) S. Colonna. H. Molinari, S. Banfi, S. Juliá, J. Masana, and
A. Alvarez, Tetrahedron, 39, 1635 (1983). c) S. Banfi, S. Colonna,
H. Molinari, S. Juliá, and J. Guixer, Tetrahedron, 40, 5207 (1984).
Manuscript in preparation.
ical even in CHCl , this experimental result can be ascribed to
3
the presence of a relatively fast background uncatalyzed epoxi-
dation process.12
6
7
Examination of the IR spectra of Boc-L-Leu –Aib–L-Leu -
6
6
OBzl, which exhibited the highest selectivity, showed a weak
-1
band at 3424 cm (w, free N-H stretching), and strong bands at
8
1
3
324 (s, hydrogen bonding N-H stretching) and 1661 cm- (s,
C=O stretching) in CH Cl solution, which can be assigned to
2
2
helical structure.13
We have demonstrated that soluble oligo-L-leucine cata-
lysts that show a high degree of helical conformational struc-
ture give results comparable to those of insoluble catalysts.
Therefore, we draw the conclusion that in general the segment
of the catalysts in the Juliá-Colonna reaction involved in the
asymmetric induction process assumes helical conformation.
This improvement in solubility of the catalyst brings in a new
dimension to the Juliá-Colonna reaction and should lead to fur-
ther understanding of the reaction.
9
1
0 M. Narita, K. Ishikawa, H. Sugasawa, and M. Doi, Bull. Chem. Soc.
Jpn., 58, 1731 (1985).
1 General method: To a mixture of chalcone 25 mg (0.12 mmol), cat-
alyst 0.030 mmol, urea-hydrogen peroxide adduct 12.5 mg (0.16
mmol) and 1 ml of THF, 0.1 ml of DBU (0.67 mmol) was added at 0
1
°
C. The mixture was allowed to warm to room temperature and
stirred for 24 h. The resulting mixture was extracted with CH Cl .
2
2
The combined extracts were washed with aqueous Na S O , water
and brine, dried over MgSO and evaporated. The crude product
was purified by preparative TLC [silica gel, petroleum ether : ether
2
2
3
4
=
10 : 1 (v/v)]. As the reaction progresses, the turbidity caused by
We are grateful to Professor Katsuyoshi Yoshizato and Mr.
Dan Kristensen, Hiroshima University, for the use of their
MALDI mass spectrometer, and Professor Kenichi Ohno of
Hiroshima University for IR spectra measurements. NMR, MS,
and CD spectra were measured at the Instrument Center for
Chemical Analysis, Hiroshima University.
the lowly soluble urea-hydrogen peroxide adduct decreases.
12 Uncatalyzed reactions in THF and CHCl solutions: By the same
3
procedure except without catalyst, the racemic epoxide was fur-
nished in 26 and 68% yield, respectively.
3 a) T. Miyazawa and E. J. Blout, J. Am. Chem. Soc., 83, 712 (1961).
b) D. F. Kennedy, M. Crisma, C. Toniolo, and D. Chapman,
Biochemistry, 30, 6541 (1991).
4 The CD spectrum of a trifluoroethanol solution of Boc-L-
Leu –Aib–L-Leu -OBzl in the absorption region of oligomer chro-
mophores displayed a negative CD band at 203 nm along with a
1
1
References and Notes
6
6
1
a) M. Bartok and K. L. Lang, “The Chemistry of Ethers, Crown
Ethers, Hydroxyl Groups and Their Sulphur Analogs, Supplement
E,” ed by S. Patai, John Wiley, New York (1980) vol. 2, p. 609. b)
A. S. Rao, S. K. Paknikar, and J. G. Kirtane, Tetrahedron, 39, 2323
shoulder centered near 222 nm with an R = [Θ] /[Θ] ratio of
222
203
0.5. In addition, the peak at 190 nm was positive with a further neg-
ative maximum at 181 nm. These spectral characteristics are
extremely similar to those of a reported oligopeptide with estab-
lished right-handed 310-helical conformation, thus implying the
presence of this structure: a) M. Manning and R. W. Woody,
Biopolymers, 31, 569 (1991). b) C. Toniolo, A. Polese, F.
Formaggio, M. Crisma, and J. Kamphuis, J. Am. Chem. Soc., 118,
(
“
1983). c) J. G. Smith, Synthesis, 1984, 629. d) E. G. Lewars, in
Comprehensive Heterocyclic Chemistry,” ed by A. R. Katritzky
and C. W. Rees, Pergamon, Oxford (1984), vol. 7, p. 95. e) I.
Erden, in “Comprehensive Heterocyclic Chemistry II,” ed by A.
Padwa, Elsevier, Oxford (1996), vol. 1A, p. 97.
2
744 (1996).
2
a) T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc., 102, 5874