November 2009
Synthesis and Molecular Recognition of Novel Multiimidazole Cyclophanes
1141
0
1
-(8-Chloro-3,6-dioxa-octyl)-2,2 -biimidazole, 3b. Red vis-
1
acid esters in chloroform was added in portions via microsyr-
inge to the cell. The concentration of guest increased along
with each addition, as far as the concentration of guest reached
about 15-fold of the concentration of host. Different absorption
spectra were obtained directly using the instrument according
to its normal procedure. The absorption of the guest was can-
cous liquid, yield 42.1% H NMR (CDCl ) d: 3.575–3.590 (t,
3
2
H, CH
2
Cl), 3.598–3.612 (t, 2H, ClCH
2
2
ACH O), 3.678–3.850
(
m, 4H, OCH ACH O), 3.869–3.914 (t, 2H, NCH ACH O),
2
2
2
2
0
4
.876–4.900 (t, 2H, NCH
0
2
), 7.114 (d, 2H, BiIm 5,5 -H), 7.154
þ
(
d, 2H, BiIm 4,4 -H) ppm; ms (m/z): 285.10 (MþH ). Anal.
0
celled by using the guest solutions of [G] concentration for
4 2
Calcd for C12H17ClN O : C 50.62, H 6.02, N 19.68, Cl 12.45;
each titration as the reference solution. The whole volume of
guest solution added to the cell did not exceed 100 lL to dis-
pel the effect of volume change. For example, when the con-
found: C 50.83, H 6.15, N 19.80, Cl 12.54.
0
1
-(5-Chloro-3-oxa-pentyl)-2,2 -bibenzimidazole,
1
4a. Pale
yellow solid, yield 61.6% H NMR (CDCl ) d: 3.498–3.508 (t,
3
centration of host 5a was 6.8 ꢃ 10ꢁ mol dm , its maximum
5
ꢁ3
2
H, CH Cl), 3.724–3.733 (t, 2H, ClCH ACH O), 4.149–4.158
2
2
2
absorption wavelength was at 242 nm, and the absorbance A
was 0.422. When the guest Val-OMe was portion-wise added
0
(
t, 2H, NCH
2
ACH
2
O), 5.294–5.302 (t, 2H, NCH
2
), 7.261–
þ
7
.850 (m,8H, ArAH) ppm; ms (m/z): 343.12 (MþH ). Anal.
ꢁ
ꢁ5
5
ꢁ5
ꢁ5
to the cell to make its concentration of 10 ꢃ 10 , 20 ꢃ 10
,
4
Calcd for C18H19ClN O: C 63.06, H 5.59, N 16.34, Cl 10.34;
ꢁ
5
ꢁ5
ꢁ5
3
mol dm , respectively, the maximal absorption increased
0 ꢃ 10 , 40 ꢃ 10 , 50 ꢃ 10 , 60 ꢃ 10 , 70 ꢃ 10
ꢁ
found: C 63.16, H 5.61, N 16.56, Cl 10.50.
0
3
1
-(8-Chloro-3,6-dioxa-octyl)-2,2 -bibenzimidazole, 4b. Pale
1
orderly and gave the corresponding DA (AꢁA ) values 0.016,
yellow solid, yield 40.9% H NMR (CDCl
H, CH Cl), 3.641–3.669 (t, 2H, ClCH ACH
m, 4H, OCH ACH O),4.116–4.125 (t, 2H, NCH
.186–5.194 (t, 2H, NCH ), 7.186–7.781 (m,8H, ArAH) ppm;
3
) d: 3.534–3.586 (t,
O), 3.925–3.950
ACH O),
0
0
.029, 0.036, 0.040, 0.044, 0.049, 0.052. According to eq. (2),
2
2
2
2
plots of calculated [G] [H] /DA values as a function of [G]
0
(
2
2
2
2
0
0
values gave an excellent linear relationship (Fig. 2). From
5
2
þ
Figure 2, we can obtain the association constant K ¼ 2655
ms (m/z): 285.10 (MþH ). Anal. Calcd for C H ClN O : C
1
2
17
4 2
3
ꢁ1
.
dm mol
5
1
0.62, H 6.02, N 19.68, Cl 12.45; found: C 50.83, H 6.15, N
9.80, Cl 12.54.
General procedure for the synthesis of cyclophanes 5a, b
REFERENCES AND NOTES
ꢀ
and 6a, b. To a stirred and warmed (95 C) solution of NaH or
KOH (2.5 mmol) and DMF (5 mL), compounds 3a, b and 4a,
b (2.1 mmol) in DMF was added dropwise over 5 h. The mix-
ture was stirred at this temperature for 20 h. The solid was fil-
tered and washed with a less absolute ethanol. The combined
solvent was removed in vacuo and the residue was purified by
column chromatography on silica gel (dichloromethane/ethanol
[1] Du, C.-P.; You, J.-S.; Yu, X.-Q.; Liu, C.-L.; Lan, J.-B.;
Xie, R.-G. Tetrahedron Asymmetry 2003, 14, 3651.
[
2] Mamta, C.; Shailesh, U.; Pramod, S. P. Tetrahedron 2007,
3, 171.
3] (a) Seel, C.; de Mendoza, J. In Comprehensive Supramolec-
6
[
ular Chemistry; Lehn, J.-M., Atwood, J. L., Davies, J. E. D., MacNi-
col, D. D., V o¨ gtle, F., Eds.; Elsevier: Oxford,1996; Vol.2; (b) V o¨ gtle,
F. Cyclophane Chemistry; Wiley: Chichester,1993; (c) Seel, C.; V o¨ g-
tle, F. Angew Chem Int Ed Engl 1992, 31, 528; (d) Diederich, F. In
Cyclophanes, Monographs in Supramolecular Chemistry; Stoddart, J.
F., Ed.; Royal Society of Chemistry: Cambridge, 1991.
14:1 or petroleum ether/ethyl acetate 1:1) to give the pure
products 5a, b and 6a, b.
Cyclophane 5a. Off-white solid, yield 45.6%, mp 186–
ꢀ
1
88 C. H NMR (CDCl
1
3
) d: 3.770–3.794 (t, 8H, OCH
2
),
.950–3.971 (t, 8H, NCH ), 7.192 (s, 4H, BiIm 5,5 -H), 7.323
0
3
2
[4] (a) Dugas, H. Bioorganic Chemistry, 3rd ed.; Springer-Ver-
lag: New York,1996; (b) Oberhausen, K. J.; Richardson, J. F.;
Buchanan, R. M.; McCusker, J. K.; Hendrichson, D. N.; Layour, J. M.
Inorg Chem 1990, 30, 1357.
0
þ
(
s, 4H, BiIm 4,4 -H) ppm; ms (m/z): 409.5 (MþH ). Anal.
Calcd for C20 : C 58.81, H 5.92, N 27.43; found: C
8.63, H 5.95, N 27.23.
Cyclophane 5b. Off-white solid, yield 24.1%, mp 172–
24 8 2
H N O
5
1
[5] (a) Lombardino, J.G.; Wiseman, E. H. J Med Chem 1974,
17, 1182; (b) Sundberg, R. J.; Martin, R. B. Chem Rev 1974, 74, 471.
[6] (a) Shi, Z.; Thummel, R. P. Tetrahedron Lett 1994, 35, 33;
(b) Shi, Z.; Thummel, R. P. Tetrahedron Lett 1995, 36, 2741; (c) Shi,
Z.; Thummel, R. P. J Org Chem 1995, 60, 5935.
ꢀ
1
74 C. H NMR (CDCl ) d 3.610–3.632 (t, 8H, OCH A-
3
2
CH O), 3.683 (s, 8H, NCH ACH O), 3.735–3.757 (t, 8H,
2
2
2
0
0
NCH
2
), 7.030 (s, 4H, BiIm 5,5 -H), 7.149 (s, 4H, BiIm 4,4 -H)
þ
ppm; ms (m/z): 497.2 (MþH ). Anal. Calcd for C24
32 8 4
H N O :
[
7] (a) Jered, C. G.; Richard, S. S.; Jody, M. T.; Chrys, W.;
C 58.05, H 6.50, N 22.57; found: C 57.87, 6.46, 22.28.
Cyclophane 6a. Off-white solid, yield 42.3%, mp 161–
Claire, A. T.; Wiley, J. Y. Organometallics 2001, 20, 1276; (b) Semih,
D.; Jered, C. G.; Matthew, J. P.; Claire, A. T.; Wiley, J. Y. Tetrahe-
dron 2005, 61, 97; (c) Thomas, W.; Rainer, B.; Reinald, F.; Sven, R.;
Dirk, W.; Helmar, G. Tetrahedron 2006, 62, 731.
ꢀ
1
63 C. H NMR (CDCl
1
3
) d: 3.797–3.821 (t, 8H, OCH
2
),
4
.189–4.212 (t, 8H, NCH
2
), 7.405–7.948 (m, 16H, ArAH)
þ
ppm; ms (m/z): 609.1 (MþH ). Anal. Calcd for C36
C 71.04, H 5.30, N 18.41; found: C 70.87, H 5.28, N 18.23.
Cyclophane 6b. Off-white solid, yield 22.3%, mp 124–
126 C. H NMR (CDCl
CH O), 3.559–3.644 (m, 8H, NCH
32 8 2
H N O :
[
[
8] Xiao, R.; Su, X.-Y.; Xie, R.-G. J Chem Res 2007, 278.
9] Tadokoro, M.; Nakasuji, K. Coord Chem Rev 2000, 198,
ꢀ
1
205.
3
) d: 3.424–3.474 (m, 8H, OCH
2
A-
[
10] Yuan, Y.; Gao, G.; Jiang, Z.-L.; You, J.-S.; Zhou, Z.-Y.;
Yuan, D.-Q.; Xie, R.-G. Tetrahedron 2002, 58, 8993.
11] (a) Benesi, H.; Hildebrand, J. H. J Am Chem Soc 1949, 71,
2703; (b) Cramer, F.; Saenger, W.; Spatz, H. C. J Am Chem Soc
977, 99, 6392.
2
2
ACH O), 4.053–4.080 (t,
2
8
6
5
H, NCH
2
), 7.259–7.717 (m, 16H, ArAH) ppm; ms (m/z):
[
þ
97.0 (MþH ). Anal. Calcd for C H N O : C 68.95, H
4
0 40 8 2
.79, N 16.08; found: C 70.13, H 5.77, N 15.96.
UV titration. UV spectra were recorded on a TU-1810 UV-
1
[
12] Xiao, J.-C.; Jean’ne, M. S. J Org Chem 2005, 70, 3072.
ꢀ
ꢀ
vis spectrophotometer at 25 C ꢂ 0.1 C with a 1-cm quartz
[13] (a) Lane, E. S. J Chem Soc 1953, 4, 2238; (b) Vyas, P. C.;
cell. A 3.0 mL of chloroform solution of host was put into the
cell. After the cell temperature had become constant at 25 C
with a thermostatic cell compartment, the solution of amino
Coyal, A. K. Chem Ind (London) 1980, 7, 287.
[14] Violleau, F.; Thiebaud, S.; Borredon, E.; Le Gars, P. Synth
Commun 2001, 31, 367.
ꢀ
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet