Paper
RSC Advances
decreased gradually during three consecutive runs. The loss of
activity can be attributed to the dissolution of Fe3O4 nano-
particles from the surface of the catalyst as described in Section
3.6. In addition, the agglomeration of Fe3O4 nanoparticles in
8 G. K. Zhang, Y. Y. Gao, Y. L. Zhang and Y. D. Guo, Environ.
Sci. Technol., 2010, 44, 6384.
9 Z. H. Ai, L. R. Lu, J. P. Li, L. Z. Zhang, J. R. Qiu and M. H. Wu,
J. Phys. Chem. C, 2007, 111, 7430.
the reused Fe3O4/MWCNTs (as can be seen from TEM patterns 10 W. Wang, Y. Liu, T. L. Li and M. H. Zhou, Chem. Eng. J., 2014,
of Fig. 1d) can also lead to the decrease of the catalytic activity of
Fe3O4/MWCNTs.
242, 1.
11 L. J. Xu and J. L. Wang, Appl. Catal., B, 2012, 123, 117.
´ ˆ
12 L. W. Hou, Q. H. Zhang, F. Jerome, D. Duprez, H. Zhang and
S. Royer, Appl. Catal., B, 2014, 144, 739.
13 R. X. Huang, Z. Q. Fang, X. M. Yan and W. Cheng, Chem. Eng.
J., 2012, 197, 242.
14 S. Shin, H. Yoon and J. Jang, Catal. Commun., 2008, 10,
178.
15 S. X. Zhang, X. L. Zhao, H. Y. Niu, Y. L. Shi, Y. Q. Cai and
G. B. Jiang, J. Hazard. Mater., 2009, 167, 560.
16 S. P. Sun and A. T. Lemley, J. Mol. Catal. A: Chem., 2011, 349,
71.
17 J. B. Zhang, J. Zhuang, L. Z. Gao, Y. Zhang, N. Gu, J. Feng,
D. L. Yang, J. D. Zhu and X. Y. Yan, Chemosphere, 2008, 73,
1524.
18 X. F. Xue, K. Hanna and N. S. Deng, J. Hazard. Mater., 2009,
166, 407.
19 K. Rusevova, F. D. Kopinke and A. Georgi, J. Hazard. Mater.,
2012, 241, 433.
20 M. Usman, P. Faure, C. Ruby and K. Hanna, Appl. Catal., B,
2012, 117, 10.
21 R. C. C. Costa, F. C. C. Moura, J. D. Ardisson, J. D. Fabris and
R. M. Lago, Appl. Catal., B, 2008, 83, 131.
22 L. J. Xu and J. L. Wang, Environ. Sci. Technol., 2012, 46,
10145.
4. Conclusions
Fe3O4/MWCNTs nanocomposites were successfully synthesized
by coprecipitation and hydrothermal method. Fe3O4/MWCNTs
showed a strong ability for the adsorption of ATZ in aqueous
solution. Fe3O4/MWCNTs can be used as an efficient heteroge-
neous Fenton-like catalyst to degrade ATZ in aqueous solution.
The degradation efficiency strongly depends on the solution pH
with a sharp increase in oxidation rate from pH 5.0 to 3.0 which
is the pH range where Fe3O4 dissolution is strongly increased,
and the soluble Fe(III) and Fe(II) species in solution initiate the
homogeneous Fenton reaction. ATZ removal efficiencies are
found not to increase much with the increasing concentrations
of Fe3O4/MWCNTs. Fe3O4/MWCNTs showed higher utilization
efficiency of H2O2 than Fe3O4 nanoparticles. The enhanced
catalytic activity of Fe3O4/MWCNTs in heterogeneous Fenton
system could be attributed to the well dispersion of Fe3O4
nanoparticles on MWCNTs, positive effect of MWCNTs via
adsorption of pollutant molecules.
Acknowledgements
23 L. C. Zhou, Y. M. Shao, J. R. Liu, Z. F. Ye, H. Zhang, J. J. Ma,
Y. Jia, W. J. Gao and Y. F. Li, ACS Appl. Mater. Interfaces, 2014,
6, 7275.
24 J. Y. Chun, H. S. Lee, S. H. Lee, S. W. Hong, J. S. Lee, C. H. Lee
and J. W. Lee, Chemosphere, 2012, 89, 1230.
25 X. B. Hu, Y. H. Deng, Z. Q. Gao, B. Z. Liu and C. Sun, Appl.
Catal., B, 2012, 127, 167.
This work has been supported by National Nature Science
Foundation of China (Grant no. 51338010, 21107125 and
51221892), National Basic Research Program of China (973
Program, Grant no. 2011CB933704), and the National Natural
Science Funds for Distinguished Yong Scholar (Grant no.
51025830).
26 L. R. Kong, X. F. Lu, X. J. Bian, W. J. Zhang and C. Wang, ACS
Appl. Mater. Interfaces, 2011, 3, 35.
27 X. B. Hu, B. Z. Liu, Y. H. Deng, H. Z. Chen, S. Luo, C. Sun,
P. Yang and S. G. Yang, Appl. Catal., B, 2011, 107, 274.
28 W. Liu, J. Qian, K. Wang, H. Xu, D. Jiang, Q. Liu, X. W. Yang
and H. M. Li, J. Inorg. Organomet. Polym., 2013, 23, 907.
References
1 M. Graymore, F. Stagnitti and G. Allinson, Environ. Int., 2001,
26, 483.
opp00001/reregistration/atrazine/atrazine_update.htm, last 29 S. Guo, G. K. Zhang, Y. D. Guo and J. C. Yu, Carbon, 2013, 60,
accessed November 2012.
437.
3 C. Brassard, L. Gill, A. Stavola, J. Lin and L. Turner, Atrazine 30 L. Gu, N. W. Zhu, H. Q. Guo, S. Q. Huang, Z. Y. Lou and
Analysis of Risks. Endangered and Threatened Salmon and H. P. Yuan, J. Hazard. Mater., 2013, 246, 145.
Steelhead Trout, US EPA Policy and Regulatory Services 31 H. Y. Zhao, Y. J. Wang, Y. B. Wang, T. C. Cao and G. H. Zhao,
Branch and Environmental Field Branch, 2003, p. 25. Appl. Catal., B, 2012, 125, 120.
4 A. L. Forgacs, Q. Ding, R. G. Jaremba, I. T. Huhtaniemi, 32 V. Cleveland, J. P. Bingham and E. Kan, Sep. Purif. Technol.,
N. A. Rahman and T. R. Zacharewski, Toxicol. Sci., 2012,
127, 391.
2014, 133, 388.
33 J. H. Deng, X. H. Wen and Q. N. Wang, Mater. Res. Bull., 2012,
5 A. S. Friedmann, Reprod. Toxicol., 2002, 16, 275.
6 R. Renner, Environ. Sci. Technol., 2002, 36, 55A.
7 C. Comninellis, A. Kapalka, S. Malato, S. A. Parsons,
47, 3369.
34 B. Pan and B. S. Xing, Environ. Sci. Technol., 2008, 42,
9005.
I. Poulios and D. Mantzavinos, J. Chem. Technol. 35 R. Gonzalez-Olmos, U. Roland, H. Toufar, F. D. Kopinke and
Biotechnol., 2008, 83, 769.
A. Georgi, Appl. Catal., B, 2009, 89, 356.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 46059–46066 | 46065