Palladium-Catalyzed Chemoselective
Cross-Coupling of Acyl Chlorides and
Organostannanes
species that readily undergo oxidative addition even with
sterically hindered aryl chlorides. Noteworthy, Herr-
mann, Beller, Nolan, and others showed that palladium
complexes exhibiting sterically demanding N-heterocyclic
carbene ligands afford another class of catalysts provid-
Rachel Lerebours, Alejandra Camacho-Soto, and
Christian Wolf*
7
ing excellent results in cross-coupling reactions.
Numerous applications of Pd-catalyzed cross-coupling
reactions with alkyl, alkenyl, and aryl halides or triflates
have been developed in recent years. Interestingly, few
examples of cross-coupling reactions with acyl chlorides
can be found in the literature, although they are known
to readily undergo oxidative addition to Pd(0) species.
Stille et al. were first to employ acyl chlorides and
organotin compounds in the Pd-catalyzed formation of
Department of Chemistry, Georgetown University,
Washington, D.C. 20057
Received June 18, 2005
8
unsymmetrical ketones. They obtained good to excellent
results using aryl-, alkenyl-, and alkynylstannanes al-
though yields dropped when reactive aryl halide func-
tionalities such as in 4-bromobenzoyl chloride were
present. Apparently, competitive oxidative addition of
Pd(0) complexes with aryl halides limits the versatility
of this method. Neumann reported tin-mediated Friedel-
Crafts acylations using aluminum trichloride to avoid the
use of transition metals, but yields generally suffered
from concomitant Fries rearrangements.9 Since pal-
ladium/copper cocatalyzed cross-coupling reactions of acyl
chlorides with R-amino- and R-alkoxystannanes were
reported by Falck and co-workers,10 acyl chlorides have
Chemoselective cross-coupling of aliphatic and aromatic acyl
chlorides with aryl-, heteroaryl-, and alkynylstannanes
proceeds in up to 98% yield using 2.5 mol % of bis(di-tert-
butylchlorophosphine)palladium(II) dichloride as the pre-
catalyst. Various functional groups including aryl chlorides
and bromides that usually undergo oxidative addition to
palladium complexes bearing phosphinous acid or dialkyl-
chlorophosphine ligands are tolerated. This procedure allows
convenient ketone formation and eliminates inherent limita-
tions of Friedel-Crafts acylations such as substituent-
directing effects and typical reactivity requirements of Lewis
acid-catalyzed electrophilic aromatic substitutions.
11
12
been successfully employed in Sonogashira, Suzuki,
Negishi,13 and Stille-type couplings with R-sulfonami-
(
5) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387-
3
388. (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1999, 38,
411-2413. (c) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000,
Palladium-catalyzed cross-coupling reactions utilizing
aryl halides and boronic acids (Suzuki), organostannanes
2
122, 4020-4028.
(
(
(
Stille), organosiloxanes (Hiyama), organozinc compounds
Negishi), Grignard reagents (Kumada coupling), alkynes
Sonogashira), or alkenes (Heck reaction) have found
(6) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J.
P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369-4378. (b) Wolfe,
J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc.
1999, 121, 9550-9561. (c) Wolfe, J. P.; Buchwald, S. L. Angew. Chem.,
Int. Ed. 1999, 38, 2413-2416. (d) Yin, J.; Rainka, M. P.; Zhang, X.-X.;
Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1162-1163. (e) Huang,
X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L.
J. Am. Chem. Soc. 2003, 125, 6653-6655. (f) Walker, S. D.; Barder, T.
E.; Martinelli, J. R. Buchwald, S. L. Angew. Chem., Int. Ed. 2004, 43,
widespread popularity in synthetic chemistry during
recent years. The remarkable advance of organometallic
1
C-C, C-N, C-O, and C-S bond-forming reactions has
been possible through the development of effective and
versatile palladium complexes bearing electron-rich and
1
871-1876.
7) Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet.
(
2
bulky ligands. In particular, the introduction of 2-bi-
Chem. 1998, 557, 93-96. (b) Selvakumar, K.; Zapf, A.; Beller, M. Org.
Lett. 2002, 4, 3031-3033. (c) Viviu, M. S.; Kissling, R. M.; Stevens, E.
D.; Nolan, S. P. Org. Lett. 2002, 4, 2229-2231. (d) Gst o¨ ttmayr, C. W.
K.; Bohm, V. P. W.; Herdtweck, E.; Grosche, M. Herrmann, W. A.
Angew. Chem., Int. Ed. 2002, 41, 1363-1365. (e) Viviu, M. S.; Kelly,
R. A., III; Stevens, E. D.; Naud, F.; Studer, M.; Nolan, S. P. Org. Lett.
phenyldicyclohexylphosphine ligands or tri-tert-butylphos-
2
phine and derivatives thereof in combination with Pd -
3
4
5
(dba)
3 2
and Pd(OAc) by Nishiyama, Hartwig, Fu, and
6
Buchwald proved to generate highly active catalyst
2003, 5, 1479-1482. (f) Altenhoff, G.; Goddard, R.; Lehmann, C. W.;
Glorius, F. Angew. Chem., Int. Ed. 2003, 42, 3690-3693. (g) De Lewis,
A. K.; Caddick, S.; Cloke, F. G. N.; Billingham, N. C.; Hitchcock, P.
B.; Leonard, J. J. Am. Chem. Soc. 2003, 125, 10066-10073. (h)
Navarro, O.; Kelly, R. A., III; Nolan, S. P. J. Am. Chem. Soc. 2003,
125, 11818-11819.
(8) (a) Labadie, J. W.; Tueting, D.; Stille, J. K. J. Org. Chem. 1983,
48, 4634-4642. (b) Labadie, J. W.; Stille, J. K. J. Am. Chem. Soc. 1983,
105, 6129-6137. (c) Bumagin, N. A.; Ponomaryov, A. B.; Beletskaya,
I. P. J. Organomet. Chem. 1985, 291, 129-132.
(9) Neumann, W. P.; Hillg a¨ rtner, H.; Baines, K. M.; Dicke, R.;
Vorspohl, K.; Kobs, U.; Nussbeutel, U. Tetrahedron 1989, 45, 951-
960.
(10) Ye, J.; Bhatt, R. K.; Falck, J. R. J. Am. Chem. Soc. 1994, 116,
1-5.
(11) Cox, R. J.; Ritson, D. J.; Dane, T. A.; Berge, J.; Charmant, J.
P. H.; Kantacha, A. Chem. Commun. 2005, 1037-1039.
(12) Chen, H.; Deng, M.-Z. Org. Lett. 2000, 2, 1649-1651.
(
1) (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41,
4
177-4211. (b) Miyaura, N., Ed. Cross-Coupling Reactions; Springer:
Berlin, 2002. (c) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002,
2
3
3
19, 131-209. (d) Cardenas, D. J. Angew. Chem., Int. Ed. 2003, 42,
84-387. (e) Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314-
21. (f) Herrmann, W. A.; O¨ fele, K.; von Preysing, D.; Schneider, S. K.
J. Organomet. Chem. 2003, 687, 229-248.
(
2) (a) Christmann, U.; Vilar, R. Angew. Chem., Int. Ed. 2005, 44,
3
4
66-374. (b) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005,
4, 674-688.
(
3) Yamamoto, T.; Nishiyama, M.; Koie, Y. Tetrahedron Lett. 1998,
3
9, 2367-2370.
(
4) (a) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121,
1
2
473-1478. (b) Hooper, M. W.; Hartwig, J. F. Organometallics 2003,
2, 3394-3403. (c) Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J.
Org. Chem. 2003, 68, 2861-2873.
1
0.1021/jo051257o CCC: $30.25 © 2005 American Chemical Society
Published on Web 09/17/2005
J. Org. Chem. 2005, 70, 8601-8604
8601