Efficient approaches toward the Strychnos pentacyclic
framework would allow the synthesis of not only other
members of this family of natural products (i.e., strych-
nopivotine (2) and akuammicine (3)) but also related non-
natural products possessing biological activity. Along these
lines, we have recently become involved in the development
and optimization of a new approach for the construction of
the pentacyclic framework of the Strychnos system. In this
paper, we report a concise stereocontrolled total synthesis
of (()-strychnine (4) wherein an efficient [4 + 2]-cycload-
dition/rearrangement method previously developed in our
laboratories plays a crucial role.9
Scheme 1
In Rawal and Iwasa’s elegant synthesis of (()-strychnine,8e
an ingenious palladium-catalyzed intramolecular Heck reac-
tion was used as the key step for the creation of the D-ring.
7
As in Woodward’s original approach, isostrychnine (5) was
the final critical intermediate used in this synthesis. Its
Prelog-Taylor cyclization to strychnine10 (Scheme 1),
however, suffers from an unfavorable 3:1 equilibration ratio
of these two compounds. From this perspective, the alterna-
tive biomimetic route to strychnine involving condensation
of the Wieland-Gumlich aldehyde (6) with an acetate
equivalent for the formation of the G ring seemed to us to
be the more attractive approach, as it avoids the unfavorable
equilibration ratio. As illustrated in Scheme 2, our retrosyn-
thetic analysis of strychnine (4) relies upon the efficient
construction of the tetracyclic substructure 8, containing the
ABCE rings of 4, by an intramolecular [4 + 2]-cycloaddition/
rearrangement cascade of 2-amidofuran 7. The synthetic plan
also involves closure of the D-ring by a palladium-catalyzed
intramolecular coupling of an amido-tethered vinyl iodide
1
2,13
with a keto enolate (i.e., 9 f 10).
11
Scheme 2
(6) (a) Aprison, M. H. In Glycine Neurotransmission; Otterson, O. P.,
Strom-Mathisen, J., Eds.; Wiley: New York, 1990; pp 1-23. (b) Gren-
ningloh, G.; Rienitz, A.; Schmitt, B.; Methfessel, C.; Zensen, M.; Beyreuther,
K.; Gundelfinger, E. D.; Betz, H. Nature 1987, 328, 215. (c) Kleckner, N.
W.; Dingledine, R. Science 1988, 241, 835.
(7) Woodward, R. B.; Cava, M. P.; Ollis, W. D.; Hunger, A.; Daeniker,
H. U.; Schenker, K. J. Am. Chem. Soc. 1954, 76, 4749. Woodward, R. B.;
Cava, M. P.; Ollis, W. D.; Hunger, A.; Daeniker, H. U.; Schenker, K.
Tetrahedron 1963, 19, 247.
(8) (a) Magnus, P.; Giles, M.; Bonnert, R.; Kim, C. S.; McQuire, L.;
Merritt, A.; Vicker, N. J. Am. Chem. Soc. 1992, 114, 4403. Magnus, P.;
Giles, M.; Bonnert, R.; Johnson, G.; McQuire, L.; Deluca, M.; Merritt, A.;
Kim, C. S.; Vicker, N. J. Am. Chem. Soc. 1993, 115, 8116. (b) Stork, G.
Presented at the Ischia Advanced School of Organic Chemistry, Ischia Porto,
Italy, September 21, 1992. (c) Knight, S. D.; Overman, L. E.; Pairaudeau,
G. J. Am. Chem. Soc. 1993, 115, 9293. Knight, S. D.; Overman, L. E.;
Pairaudeau, G. J. Am. Chem. Soc. 1995, 117, 5776. (d) Kuehne, M. E.; Xu,
F. J. Org. Chem. 1993, 58, 7490. Kuehne, M. E.; Xu, F. J. Org. Chem.
1
998, 63, 9427. (e) Rawal, V. H.; Iwasa, S. J. Org. Chem. 1994, 59, 2685.
(f) Sol e´ , D.; Bonjoch, J.; Garc ´ı a-Rubio, S.; Peidr o´ , E.; Bosch, J. Angew.
Chem., Int. Ed. 1999, 38, 395. Sol e´ , D.; Bonjoch, J.; Garc ´ı a-Rubio, S.;
Peidr o´ , E.; Bosch, J. Chem.sEur. J. 2000, 6, 655. (g) Eichberg, M. J.;
Dorta, R. L.; Lamottke, K.; Vollhardt, K. P. C. Org. Lett. 2000, 2, 2479.
Eichberg, M. J.; Dorta, R. L.; Grotjahn, D. B.; Lamottke, K.; Schmidt, M.;
Vollhardt, K. P. C. J. Am. Chem. Soc. 2001, 123, 9324. (h) Ito, M.; Clark,
C. W.; Mortimore, M.; Goh, J. B.; Martin, S. F. J. Am. Chem. Soc. 2001,
1
1
2
4
23, 8003. (i) Nakanishi, M.; Mori, M. Angew. Chem., Int. Ed. 2002, 41,
934. Mori, M.; Nakanishi, M.; Kajishima, D.; Sato, Y. J. Am. Chem. Soc.
003, 125, 9801. (j) Bodwell, G. J.; Li, J. Angew. Chem., Int. Ed. 2002,
1, 3261. (k) Ohshima, T.; Xu, Y.; Takita, R.; Shimizu, S.; Zhong, D.;
Some years ago, we commenced a program of research
based on the intramolecular [4 + 2]-cycloaddition/rearrange-
Shibasaki, M. J. Am. Chem. Soc. 2002, 124, 14546. Ohshima, T.; Xu, Y.;
Takita, R.; Shibasaki, M. Tetrahedron 2004, 60, 9569. (l) Kaburagi, Y.;
Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2004, 126, 10246.
(12) (a) Sol e´ , D.; Peidr o´ , E.; Bonjoch, J. Org. Lett. 2000, 2, 2225. (b)
Sol e´ , D.; Diaba, J.; Bonjoch, J. J. Org. Chem. 2003, 68, 5746. (c) Bonjoch,
J.; Diaba, F.; Puigb o´ , G.; Peidr o´ , E.; Sol e´ , D. Tetrahedron Lett. 2003, 44,
8387. (d) Sol e´ , D.; Urbaneja, X.; Bonjoch, J. AdV. Synth. Catal. 2004, 346,
1646. (e) Sol e´ , D.; Urbaneja, X.; Bonjoch, J. Org. Lett. 2005, 7, 5461.
(13) For some other examples of intramolecular Pd-catalyzed vinylations,
see: (a) Piers, E.; Oballa, R. M. Tetrahedron Lett. 1995, 36, 5857. (b) Yu,
J.; Wang, T.; Liu, X.; Deschamps, J.; Flippen-Anderson, J.; Liao, X.; Cook,
J. M. J. Org. Chem. 2003, 68, 7565.
(9) (a) Wang, Q.; Padwa, A. Org. Lett. 2004, 6, 2189. (b) Padwa, A.;
Ginn, J. D. J. Org. Chem. 2005, 70, 5197. (c) Padwa, A.; Bur, S. K.; Zhang,
H. J. Org. Chem. 2005, 70, 6833. (d) Zhang, H.; Padwa, A. Org. Lett.
2
2
8
006, 8, 247.
10) Prelog, V.; Battegay, J.; Taylor, W. I. HelV. Chim. Acta 1948, 31,
244.
(
(11) Anet, F. A. L.; Robinson, R. Chem. Ind. 1953, 245. See also ref
a,c.
280
Org. Lett., Vol. 9, No. 2, 2007