J . Org. Chem. 1998, 63, 8957-8964
8957
Asym m etr ic Red u ction of Keton es by th e Aceton e P ow d er of
Geotr ich u m ca n d id u m
K. Nakamura* and T. Matsuda
Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011 J apan
Received J une 30, 1998
Aromatic ketones, â-keto esters, and simple aliphatic ketones were reduced with excellent selectivity
to the corresponding (S)-alcohols by using the acetone powder of Geotrichum candidum. This
method is superior in reactivity and stereoselectivity to reduction by the whole-cell. The
experimental conditions for the reduction system such as ratio of the biocatalyst to the substrate,
kinds of coenzymes, alcohol for coenzyme regeneration, and buffer, pH, and reaction temperature
were investigated, and stability and preservability of the biocatalyst were also examined. This
method is very convenient for the synthesis of optically pure alcohols on a gram scale.
In tr od u ction
liver (HLADH),8 Thermoanaerobium brockii (TBADH),9
Thermoanaerobacter ethanolicus,10 Lactobacillus kefir,11
Pseudomonas sp.,12 Gluconobacter oxidans,13 Bacillus
stearothermophilus,14 Geotrichum candidum,15 et al. are
used to reduce a full range of carbonyl compounds.
Extensive research has been undertaken on the develop-
ment of enzymatic systems for the asymmetric reduction
of ketones, and many methods to control the stereochem-
istry of the reduction have been reported.16
The synthesis of enantiomerically pure compounds is
becoming increasingly important for research and devel-
opment in chemistry and biochemistry.1 Among chiral
compounds, enantiomerically pure alcohols are particu-
larly useful as building blocks for the synthesis of natural
products, pharmaceuticals, and agricultural chemicals
since a variety of methods have been developed to convert
the alcohol functionality to other useful functional groups
such as chloride,2 amine,3 azide,4 fluoride,5 etc. One of
the easiest methods for the preparation of optically active
alcohols is the asymmetric reduction of ketones by either
organometallic reagents with chiral ligands or biocata-
lysts such as alcohol dehydrogenases. Enzymatic reduc-
tions have attracted more and more attention due to the
high stereoselectivities.6 Currently, alcohol dehydroge-
nases from various sources such as baker’s yeast,7 horse
However, there is still a need to improve the enantio-
selectivity of biocatalytic reduction. Although the selec-
tivities of previously reported reduction systems were
relatively high (around 90-95% ee) to moderate, enan-
tiomerically pure compounds (>99% ee) could not be
obtained except for a few cases. For example, the selec-
tivity of the reduction of ketones by permeabilized cells
of Gluconobacter oxidans is around 95% for most of its
substrates(2-pentanone,2-hexanone,2-octanone,3-nonanone,
cyclohexyl methyl ketone), but a selectivity of 99% ee is
obtained only for the reduction of acetophenone and
methyl isopropyl ketone.13
(1) (a) Seebach, D.; Imwinkelried, R.; Weber, T. In Modern Synthetic
Methods 1986; Scheffold, R., Ed.; Springer-Verlag: Berlin, 1986; Vol.
4, pp 125-259. (b) Helmchen, G.; Karge, R.; Weetman, J . In Modern
Synthetic Methods 1986; Scheffold, R., Ed.; Springer-Verlag: Berlin,
1986; Vol. 4, pp 261-306. (c) Brown, H. C.; J adhav, P. K.; Singram, B.
In Modern Synthetic Methods 1986; Scheffold, R., Ed.; Springer-
Verlag: Berlin, 1986; Vol. 4, pp 307-356. (d) Santaniello, E., Ferra-
boschi, P., Grisenti, P., Manzocchi, A. Chem. Rev. 1992, 92, 1071-
1140. (e) Chiral Auxiliaries and Ligands in Asymmetric Synthesis; Sey-
den-Penn, J., Ed.; Wiley-Interscience: New York, 1995. (f) Stereoselective
Synthesis; Nograde, M., Ed.; VCH Publishers: New York, 1995.
(2) (a) Lewis, E. S.; Boozer, C. E. J . Am. Chem. Soc. 1952, 74, 308.
(b) Ward, A. M. Organic Syntheses; J ohn Wiley: New York, 1943;
Collect. Vol. 2, p 159. (c) Shoppee, C. W.; Coll, J . C. J . Chem. Soc. C
1970, 1124. (d) Carman, R. M.; Shaw, I. M. Aust. J . Chem. 1976, 29,
133.
(3) (a) Degerbeck, F.; Fransson, B.; Grehn, L.; Ragnarsson, U. J .
Chem. Soc., Perkin Trans. 1 1992, 245. (b) Corey, E. J .; Wei-guo, S.
Tetrahedron Lett. 1990, 31, 3833.
(4) Fabiano, E.; Golding, B. T.; Sadeghi, M. M. Synthesis 1987, 190.
(5) (a) Leroy, J .; Hebert, E.; Wakselman, C. J . Org. Chem. 1979,
44, 3406. (b) Hamman, S.; Barrelle, M.; Tetaz, F.; Beguin, C. G. J .
Fluorine Chem. 1987, 37, 85. (c) Kopecky, J .; Smejkal, J . Collect. Czech.
Chem. Commun. 1980, 45, 2971.
Moreover, the substrate specificity of most of the
systems is not wide enough to be beneficial for organic
(7) (a) MacLeod, R.; Prosser, H.; Fikentscher, L.; Lanyi, J .; Mosher,
H. S. Biochemistry 1964, 3, 838. (b) Servi, S. Synthesis 1990, 1.
(8) (a) Davies, J .; J ones, J . B. J . Am. Chem. Soc. 1979, 101, 5405.
(b) Haslegrave, J . A.; J ones, J . B. J . Am. Chem. Soc. 1982, 104, 4666.
(c) J ones, J . B.; Beck, J . F. Applications of Biochemical Systems in
Organic Chemistry; J ones, J . B., Sih, C. J ., Perlman, D., Eds.; J ohn
Wiley & Sons: New York, 1976; Part 1, pp 107-401.
(9) (a) Keinan, E.; Hafeli, E. K.; Seth, K. K.; Lamed, R. J . Am. Chem.
Soc. 1986, 108, 162. (b) Keinan, E.; Seth, K. K.; Lamed, R. J . Am.
Chem. Soc. 1986, 108, 3474.
(10) Zheng, C.; Pham, V. T.; Phillips, R. Catal. Today 1994, 22, 607.
(11) (a) Hummel, W. Appl. Microbiol. Biotechnol. 1990, 34, 15. (b)
Bradshaw, C. W.; Hummel, W.; Wong, C.-H. J . Org. Chem. 1992, 57,
1532.
(12) (a) Shen, G.-J .; Wang, Y.-F.; Bradshaw, C.; Wong, C.-H. J .
Chem. Soc., Chem. Commun. 1990, 677. (b) Bradshaw, C. W.; Fu, H.;
Shen, G.-J .; Wong, C.-H. J . Org. Chem. 1992, 57, 1526.
(6) (a) Servi, S. Microbial Reagents in Organic Synthesis, NATO ASI
Series C; Kluwer: Dordrecht, The Netherlands, 1992. (b) Faber, K.
Biotransformations in Organic Chemistry, 2nd ed.; Springer: Berlin,
1995. (c) Roberts, S. M.; Turner, N. J .; Willetts, A. J .; Turner, M. K.
Introduction to Biocatalysis Using Enzymes and Microorganisms;
Cambridge University Press: New York, 1995. (d) Azerad, R. Bull.
Soc. Chim. Fr. 1995, 132, 17. (e) Roberts, S. M.; Turner, N. J . J .
Biotechnol. 1992, 22, 227. (f) Turner, N. J . Nat. Prod. Rep. 1994, 11,
1. (g) Sih, C. J .; Chen, C.-S. Angew. Chem., Int. Ed. Engl. 1984, 23,
570. (h) Pratt, A. J . Chem. Brit. 1989, 282. (i) Klibanov, A. Acc. Chem.
Res. 1990, 23, 114.
(13) Adlercreutz, P. Enzyme Microb. Technol. 1991, 13, 9.
(14) Bortolini, O.; Fantin, G.; Fogagnolo, M.; Giovannini, P. P.;
Guerrini, A.; Medici, A. J . Org. Chem. 1997, 62, 1854.
(15) (a) Azerad, R.; Buisson, D. Microbial Reagents in Organic
Synthesis, NATO ASI Series C; Servi, S., Ed.; Kluwer Academic
Publishers: Dordrecht, The Netherlands, 1992; pp 421-440. (b)
Nakamura, K.; Yoneda, T.; Miyai, T.; Ushio, K.; Oka, S.; Ohno, A.
Tetrahedron Lett. 1988, 29, 2453. (c) Nakamura, K.; Takano, S.;
Terada, K.; Ohno, A. Chem. Lett. 1992, 951. (d) Nakamura, K.; Takano,
S.; Ohno, A. Tetrahedron Lett. 1993, 34, 6087. (e) Nakamura, K.; Inoue,
Y.; Ohno, A. Tetrahedron Lett. 1995, 36, 265.
10.1021/jo9812779 CCC: $15.00 © 1998 American Chemical Society
Published on Web 10/29/1998