5
catalyst systems, in which each metal center acts coopera-
tively and mutually not only to activate substrates but also
to enhance any selectivities including enantioselectivity.
Recent achievements were that bimetallic catalyst systems
based on zinc, aluminum, and titanium with chiral auxiliary
ligands catalyzed some asymmetric reactions such as aldol
6
7
reaction and carbonyl reduction.
On the basis of these precedents, we could point out that
two factors, presence or absence of salt and mononuclear or
dinuclear status, are mainly responsible to the catalytic
performance of lanthanoid compounds, and thus we antici-
pated that a salt-free, dinuclear compound of samarium
bearing a new chiral multidentate ligand, (R,R,R,R)-N,N,N′,N′-
tetra(2-hydroxy-2-phenylethyl)-1,3-xylylene diamine [(R)-
Figure 1. Chiral multidentate ligands.
reaction of 3e with the alcoholic parts of (R)-2 resulted in
the formation of the salt-free complex 1,3-C
CHPhO) SmI] (4e) along with release of cyclooctatetraene.
Titration monitored by absorption spectroscopy indicated that
equiv of 3e were consumed in the reaction with (R)-2 to
6 4 2 2
H [CH N(CH -
2], could exhibit superior catalytic performance for asym-
2
2
metric transfer hydrogenation of aryl ketones.
The multidentate ligand (R)-2 was obtained as a pale
yellow oil in 50% yield by the reaction of m-xylylenediamine
2
give the salt-free dinuclear samarium species 4e.
When the catalyst 4e (5 mol %) was used for asymmetric
transfer hydrogenation of acetophenone in 2-propanol at 25
8
with excess amounts of (R)-(+)-styrene oxide. For preparing
a salt-free samarium complex of (R)-2, we used the precursor
8
9
SmI(η -cyclooctatetraene)(thf) (3e), in which the cyclooc-
°
C for 24 h, (R)-1-phenylethanol was obtained in 95% ee
tatetraene ligand acts as a dianion. Thus, the simple one-pot
and quantitative yield (Table 1, run 5). We found that the
(
5) (a) Ma, J.-A.; Cahard, D. Angew. Chem., Int. Ed. 2004, 43, 4566.
b) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004,
26, 9928. (c) Somei, H.; Asano, Y.; Yoshida, T.; Takizawa, S.; Yamataka,
H.; Sasai, H. Tetrahedron Lett. 2004, 45, 1841. (d) Ding, X.; Ukaji, Y.;
Fujinami, S.; Inomata, K. Chem. Lett. 2002, 31, 302. (e) Nishibayashi, Y.;
Imajima, H.; Onodera, G.; Hidai, M.; Uemura, S. Organometallics 2004,
(
1
Table 1. Asymmetric Transfer Hydrogenation of
Acetophenone Using Catalyst Systems Derived from (R)-2 and 2
8
Equiv of Lanthanide Complexes, LnI(η -cyclooctatetraene)(thf)
n
23, 26. (f) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura,
3a-e)a
(
S. J. Org. Chem. 2004, 69, 3408. (g) Tosaki, S.; Nemoto, T.; Ohshima, T.;
Shibasaki, M. Org. Lett. 2003, 5, 495. (h) Nishibayashi, Y.; Onodera, G.;
Inada, Y.; Hidai, M.; Uemura, S. Organometallics 2003, 22, 873. (i)
Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Milton, M. D.; Hidai, M.;
Uemura, S. Angew. Chem., Int. Ed. 2003, 42, 2681. (j) Nishibayashi, Y.;
Yamauchi, A.; Onodera, G.; Uemura, S. J. Org. Chem. 2003, 68, 5875. (k)
Nishibayashi, Y.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2003,
lanthanoid
complexes
conversion
(%)b
1
25, 6060. (l) Majima, K.; Takita, R.; Okada, A.; Ohshima, T.; Shibasaki,
run
ligand
ee (%) (config)c
M. J. Am. Chem. Soc. 2003, 125, 15837. (m) Yamagiwa, N.; Matsunaga,
S.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 16178. (n) Nishibayashi,
Y.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 7900.
1
2
3
4
5
6
(R)-2
(R)-2
(R)-2
(R)-2
(R)-2
(R)-1
3a
3b
3c
3d
3e
3e
5
9
46
43
>99
77
18 (R)
22 (R)
79 (R)
77 (R)
95 (R)
82 (R)
(
o) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.; Uemura, S. J.
Am. Chem. Soc. 2002, 124, 11846. (p) Inada, Y.; Nishibayashi, Y.; Hidai,
M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 15172. (q) Nishibayashi, Y.;
Wakiji, I.; Ishii, Y.; Uemura, S.; Hidai, M. J. Am. Chem. Soc. 2001, 123,
3
393. (r) Nishibayashi, Y.; Yamanashi, M.; Wakiji, I.; Hidai, M. Angew.
Chem., Int. Ed. 2000, 39, 2909. (s) Nishibayashi, Y.; Wakiji, I.; Hidai, M.
J. Am. Chem. Soc. 2000, 122, 11019.
a
(6) (a) Gnanadesikan, V.; Horiuchi, Y.; Ohshima, T.; Shibasaki, M. J.
Reaction temperature, 25 °C; reaction time, 24 h; S/C ) 20; 25 equiv
b 1
Am. Chem. Soc. 2004, 126, 7782. (b) Trost, B. M.; Mino, T. J. Am. Chem.
Soc. 2003, 125, 2410. (c) Trost, B. M.; Terrell, L. R. J. Am. Chem. Soc.
of 2-propanol for substrate. Conversion was determined by H NMR
spectroscopy. c Enantiomeric purity was determined by chiral HPLC.
Absolute configuration was assigned by comparison of product rotations
to the literature value.11
2003, 125, 338. (d) Trost, B. M.; Yeh, V. S. C. Angew. Chem., Int. Ed.
2002, 41, 861. (e) Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem. Soc.
2001, 123, 3367. (f) Trost, B. M.; Yeh, V. S. C.; Ito, H.; Bremeyer, N.
Org. Lett. 2002, 4, 2621. (g) Trost, B. M.; Silcoff, E. R.; Ito, H. Org. Lett.
001, 3, 2497. (h) Yoshikawa, N.; Shibasaki, M. Tetrahedron 2001, 57,
catalytic activity and enantioselectivity depended highly on
the central metals, and the samarium catalyst 4e was the best
(
7) (a) Ooi, T.; Takahashi, M.; Yamada, M.; Tayama,; E.; Omoto, K.;
Maruoka, K. J. Am. Chem. Soc. 2004, 126, 1150. (b) Hanawa, H.;
Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 1708. (c) Kii,
S.; Maruoka, K. Tetrahedron Lett. 2001, 42, 1935. (d) Maruoka, K. Catal.
Today 2001, 66, 33. (e) Hanawa, H.; Kii, S.; Asao, N.; Maruoka, K.
Tetrahedron Lett. 2000, 41, 5543. (f) Ooi, T.; Itagaki, Y.; Miura, T.;
Maruoka, K. Tetrahedron Lett. 1999, 40, 2137. (g) Ooi, T.; Miura, T.;
Takaya, K.; Maruoka, K. Tetrahedron Lett. 1999, 40, 7695. (h) Ooi, T.;
Miura, T.; Maruoka, K. Angew. Chem., Int. Ed. 1998, 37, 2347. (i) Ooi,
T.; Takahashi, M.; Maruoka, K. Angew. Chem., Int. Ed. 1998, 37, 835. (j)
Ooi, T.; Tayama, E.; Takahashi, M.; Maruoka, K. Tetrahedorn Lett. 1997,
6 4 2 2 2 2
among the tested catalysts 1,3-C H [CH N(CH CHPhO) LnI]
(
4a-e) (Table 1), which were derived by mixing (R)-2 and
8
2 equiv of LnI(η -cyclooctatetraene)(thf)
n
(3a: Ln ) La, n
)
3; 3b: Ln ) Ce, n ) 3; 3c: Ln ) Pr, n ) 3; 3d: Ln )
9
Nd, n ) 2; 3e: Ln ) Sm, n ) 1). The enantioselectivity of
the product decreased in the order of the increased atomic
radii, La ≈ Ce < Nd < Pr , Sm, such a tendency being
3
1
8, 7403. (k) Ooi, T.; Takahashi, M.; Maruoka, K. J. Am. Chem. Soc. 1996,
18, 11307.
(
8) (a) Manickam, G.; Sundararajan, G. Tetrahedron: Asymmetry 1997,
(9) (a) Mashima, K.; Nakayama, Y.; Nakamura, A.; Kanehisa, N.; Kai,
Y.; Takaya, H. J. Organomet. Chem. 1994, 473, 85. (b) Mashima, K.;
Takaya, H. Tetrahedron Lett. 1989, 30, 3697.
8
, 2271. (b) Trost, B. M.; Van Vranken, D. L.; Bingl, C. J. Am. Chem.
Soc. 1992, 114, 9327.
4696
Org. Lett., Vol. 6, No. 25, 2004