2544
K. Ahlford et al.
LETTER
Chelucci, G.; Gladiali, S.; Siega, K.; Toniutti, M.; Zanette,
M.; Zangrando, E.; Rigo, P. Angew. Chem. Int. Ed. 2005, 44,
6214. (g) Enthaler, S.; Jackstell, R.; Hagemann, B.; Junge,
K.; Erre, G.; Beller, M. J. Organomet. Chem. 2006, 691,
4652. (h) Reetz, M. T.; Li, X. J. Am. Chem. Soc. 2006, 128,
1044.
(8) General Procedure for the Preparation of Hydroxamic
Acid Ligands 1a–d
To a solution of 2,4,6-trichloro-1,3,5-triazine (0.1 mmol) in
anhyd CH2Cl2 (8 mL) cooled to 0 °C, the following
components were added in the order they are written: Boc-
protected amino acid (3 mmol), NMM (6 mmol), DMAP
(0.3 mmol), and NH2OH·HCl (3 mmol). The reaction
mixture was stirred at r.t. for 14 h and thereafter filtered
through a plug of silica, using EtOAc as eluent. The residue
obtained after evaporation of the filtrate was chromatog-
raphed on silica (EtOAc–pentane, 10:1), followed by
recrystallization from acetone–pentane to give the
hydroxamic acids.
(3) (a) Pastor, I. M.; Västilä, P.; Adolfsson, H. Chem. Commun.
2002, 2046. (b) Pastor, I. M.; Västilä, P.; Adolfsson, H.
Chem. Eur. J. 2003, 9, 4031. (c) Bøgevig, A.; Pastor, I. M.;
Adolfsson, H. Chem. Eur. J. 2004, 10, 294. (d) Västilä, P.;
Zaitsev, A. B.; Wettergren, J.; Privalov, T.; Adolfsson, H.
Chem. Eur. J. 2006, 12, 3218.
(4) Zaitsev, A. B.; Adolfsson, H. Org. Lett. 2006, 8, 5129.
(5) For other examples of amino acid based ligands in the
transfer hydrogenation of ketones, see: (a) Ohta, T.;
Nakahara, S.; Shigemura, Y.; Hattori, K.; Furokawa, I.
Chem. Lett. 1998, 491. (b) Ohta, T.; Nakahara, S.;
Shigemura, Y.; Hattori, K.; Furokawa, I. Appl. Organomet.
Chem. 2001, 15, 699. (c) Carmona, D.; Lahoz, F. J.;
Atencio, R.; Oro, L. A.; Lamata, M. P.; Viguri, F.; San José,
E.; Vega, C.; Reyes, J.; Joó, F.; Kathó, Chem. Eur. J. 1999,
5, 1544. (d) Kathó, ; Carmona, D.; Viguri, F.; Remacha, C.
D.; Kovács, J.; Joó, F.; Oro, L. A. J. Organomet. Chem.
2000, 593-594, 209. (e) Carmona, D.; Lamata, M. P.;
Viguri, F.; Dobrinovich, I.; Lahoz, F. J.; Oro, L. A. Adv.
Synth. Catal. 2002, 344, 499. (f) Carmona, D.; Lamata, M.
P.; Oro, L. A. Eur. J. Inorg. Chem. 2002, 2239. (g) Faller,
J. W.; Lavoie, A. R. Organometallics 2001, 20, 5245.
(h) Rhyoo, H. Y.; Yoon, Y.-A.; Park, H.-J.; Chung, Y. K.
Tetrahedron Lett. 2001, 42, 5045. (i) Rhyoo, H. Y.; Park,
H.-J.; Chung, Y. K. Chem. Commun. 2001, 2064.
(j) Rhyoo, H. Y.; Park, H.-J.; Suh, W. H.; Chung, Y. K.
Tetrahedron Lett. 2002, 43, 269.
(6) Highly efficient vanadium catalysts containing ligands
based on hydroxamic acids were recently employed in the
asymmetric epoxidation of allylic alcohols, see: (a) Zhang,
W.; Basak, A.; Kosugi, Y.; Hoshino, Y.; Yamamoto, H.
Angew. Chem. Int. Ed. 2005, 44, 4389. For selected earlier
reports, see: (b) Michaelson, R. C.; Palermo, R. E.;
Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 1992.
(c) Murase, N.; Hoshino, Y.; Oishi, M.; Yamamoto, H.
J. Org. Chem. 1999, 64, 338. (d) Hoshino, Y.; Yamamoto,
H. J. Am. Chem. Soc. 2000, 122, 10452. (e) Bolm, C.;
Kühn, T. Synlett 2000, 899. (f) Bolm, C. Coord. Chem. Rev.
2003, 237, 245.
Compound 1a: yield 41%. 1H NMR (400 MHz, acetone-d6,
25 °C): d = 10.09 (s, 1 H), 8.22 (br s, 1 H), 6.06 (s, 1 H), 4.08
(q, J = 7.11 Hz, 1 H), 1.40 (s, 9 H), 1.29 (d, J = 7.11 Hz, 3
H). 13C NMR (100 MHz, acetone-d6, 25 °C): d = 170.0,
155.1, 78.3, 47.7, 27.5, 17.8.
Compound 1b: yield 25%. 1H NMR (400 MHz, acetone-d6,
25 °C ): d = 10.18 (br s, 1 H), 8.22 (br s, 1 H), 5.91 (d,
J = 8.16 Hz, 1 H), 3.75–3.85 (m, 1 H), 1.40 (s, 9 H), 0.89–
0.94 (m, 6 H). 13C NMR (100 MHz, acetone-d6, 25 °C ): d =
168.4, 155.4, 78.2, 57.5, 30.8, 27.5, 18.5, 17.6.
Compound 1c: yield 25%. 1H NMR (400 MHz, acetone-d6,
25 °C): d = 10.20 (br s, 1 H), 8.37 (br s, 1 H), 7.16–7.31 (m,
5 H), 6.12 (d, J = 7.32 Hz, 1 H), 4.23–4.36 (m, 1 H), 3.10
(dd, J = 13.71, 6.03 Hz, 1 H), 2.91 (dd, J = 13.71, 8.59 Hz, 1
H), 1.33 (s, 9 H). 13C NMR (100 MHz, acetone-d6, 25 °C):
d = 168.4, 155.1, 137.5, 129.2, 128.1, 126.3, 78.4, 53.6, 38.1,
27.5.
Compound 1d: yield 10%. 1H NMR (400 MHz, acetone-d6,
25 °C): d = 10.39 (br s, 1 H), 8.25 (br s, 1 H), 7.42–7.47 (m,
2 H), 7.26–7.37 (m, 3 H), 6.46 (d, J = 6.10 Hz, 1 H), 5.20 (d,
J = 6.10 Hz, 1 H), 1.39 (s, 9 H). 13C NMR (100 MHz,
acetone-d6, 25 °C): d = 167.3, 154.7, 138.9, 128.3, 127.6,
127.0, 78.6, 55.7, 27.5.
(9) For the original report on the importance of external base in
transition-metal-catalyzed transfer-hydrogenation reactions,
see: Chowdhury, R. L.; Bäckvall, J.-E. J. Chem. Soc., Chem.
Commun. 1991, 1063.
(10) General Procedure for the Transfer Hydrogenation of
Ketones Using Ligands 1a–d
[{RhCl2Cp*}2] (0.0025 mmol), ligand (0.0055 mmol), and
LiCl (0.05 mmol) were dried under vacuum in a dry Schlenk
tube for 15 min. Ketone (1 mmol), i-PrOH (4.5 mL), and a
0.01 M solution of i-PrONa in i-PrOH (0.5 mL, 5 mol%)
were added under nitrogen. The reaction mixture was stirred
at ambient temperature. Aliquots were taken after the
reaction times indicated in Tables 1 and 2 and were then
passed through a pad of silica with EtOAc as the eluent. The
resulting solutions were analyzed by GLC (CP Chirasil
DEXCB).
(7) Giacomelli, G.; Porcheddu, A.; Salaris, M. Org. Lett. 2003,
5, 2715.
(11) Turnover frequencies determined after 30 min reaction time.
Synlett 2007, No. 16, 2541–2544 © Thieme Stuttgart · New York