Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C8CC05172K
COMMUNICATION
Journal Name
terms of a build up a negative charge in the active complex of chromium in enantioselective catalysis besides the NHK
the rate-limiting step. In contrast, substrates with electron- reaction. Further investigations towards the extension of this
withdrawing groups gave rise to a negative reaction parameter catalyst to other substrates and additional studies of the
(ρ = -0.66 ± 0.05), which can be attributed to build-up of a reaction mechanism are currently underway in our
positive charge in the active complex of the rate-limiting step. laboratories.
The non-linear Hammett correlation with a maximum rate for
We acknowledge the award of a pre-doctoral fellowship to
a derivative with a small Hammett substituent constant is V. V. from the Landesgraduiertenförderung (LGF Funding
typical of a single mechanism with a change in the rate-limiting Program of the state of Baden-Württemberg) and funding by
step depending on the electronic properties of the substrate. the Deutsche Forschungsgemeinschaft (Ga 488/9-2). We thank
Thus, the positive reaction parameter of the electron-rich Clemens Blasius and Dr. Jan Wenz for their advice and support.
derivatives is in accordance with a rate-determining insertion
step, whereas the negative reaction parameter of the electron-
Conflicts of Interest
poor derivatives agrees well with a rate-limiting metathesis
process. This is consistent with a deactivation of electron-rich
ketones compounds towards hydride insertion and an
activation of the corresponding alkoxides with respect to a
metathesis step. On the other hand, insertion is expected to
be fast for electron-poor ketones, with the metathesis step
being decelerated in this case. The hypothesis of a change in
the rate-limiting step is also supported by KIE analysis in the
two distinct kinetic regimes: compared to acetophenone a
somewhat larger KIE is observed for the para-bromo derivative
There are no conflicts to declare.
References
1. a) T. Agapie, Coord. Chem. Rev., 2011, 255, 861-880; b) G. C.
Hargaden, P. J. Guiry, Adv. Syn. Catal., 2007, 349, 2407-2424; c)
K. H. Theopold, Eur. J. Inorg. Chem., 1998, 1998, 15-24; d) G.
Zhang, Q. Tian, Synthesis, 2016, 48, 4038-4049.
2. a) M. Bandini, et al., Angew. Chem. Int. Ed., 1999, 38, 3357-
3359; b) A. Berkessel, et al., Angew. Chem. Int. Ed., 2003, 42,
1032-1035; c) Q. H. Deng, H. Wadepohl, L. H. Gade, Chem. Eur.
J., 2011, 17, 14922-14928; d) A. Fürstner, N. Shi, J. Am. Chem.
Soc., 1996, 118, 12349-12357; e) A. Gil, F. Albericio, M. Alvarez,
Chem. Rev., 2017, 117, 8420-8446; f) G. C. Hargaden, P. J. Guiry,
Stereoselective Synthesis of Drugs and Natural Products, 2013,
1-22; g) M. Inoue, T. Suzuki, M. Nakada, J. Am. Chem. Soc.,
2003, 125, 1140-1141; h) J. J. Miller, M. S. Sigman, J. Am. Chem.
Soc., 2007, 129, 2752-2753; i) K. Sugimoto, S. Aoyagi, C.
Kibayashi, J. Org. Chem., 1997, 62, 2322-2323.
(kH/kD
=
ketone featuring a para-methoxy substituent (kH/kD
1.78) as opposed to a significantly reduced KIE for a
1.18).
=
The large KIE for σ-bond metathesis is in line with our previous
work6b,g and we envision that the smaller values for electron-
rich ketones can be attributed to
a critical associative
formation of a chromium-hydride ketone complex (vide infra)
in the rate-determining step.
3. a) A. Döhring, et al., Organometallics, 2000, 19, 388-402; b) M.
Enders, et al., J. Organometallic Chem., 2003, 687, 125-130; c) Z.
Z. Liu, et al., Organometallics, 2011, 30, 749-756; d) M.
Ronellenfitsch, et al., Macromol., 2016, 50, 35-43; e) B. J.
Thomas, K. H. Theopold, J. Am. Chem. Soc., 1988, 110, 5902-
5903.
4. a) A. Carter, et al., Chem. Commun., 2002, 858-859; b) R.
Emrich, O. Heinemann, P. W. Jolly, et al., Organometallics, 1997,
16, 1511-1513; c) Y. Shaikh, et al., Organometallics, 2012, 31,
7427-7433; d) T. Simler, P. Braunstein, A. A. Danopoulos,
Organometallics, 2016, 35, 4044-4049.
5. a) X. Cong, H. Tang , X. Zeng, J. Am. Chem. Soc., 2015, 137,
14367-14372; b) O. M. Kuzmina, P. Knochel, Org. Lett., 2014, 16,
5208-5211; c) A. K. Steib, et al., J. Am. Chem. Soc., 2013, 135,
15346-15349; d) A. K. Steib, et al., Chem. Eur. J., 2015, 21, 1961-
1965.
6. a) T. Bleith, et al., Angew. Chem. Int. Ed., 2016, 55, 7852-7856;
b) T. Bleith, L. H. Gade, J. Am. Chem. Soc., 2016, 138, 4972-4983;
c) Q. H. Deng, H. Wadepohl, L. H. Gade, J. Am. Chem. Soc., 2012,
134, 2946-2949; d) C. A. Rettenmeier, et al., Inorg. Chem., 2016,
55, 8214-8224; e) V. Vasilenko, et al., Angew. Chem. Int. Ed.,
2017, 56, 8393-8397; f) J. Wenz, et al., Chem. Commun., 2016,
52, 202-205; g) V. Vasilenko, C. K. Blasius, L. H. Gade, J. Am.
Chem. Soc., DOI: 10.1021/jacs.8b05340.
7. a) T. Bleith, H. Wadepohl, L. H. Gade, J. Am. Chem. Soc., 2015,
137, 2456-2459; b) Q. H. Deng, et al., J. Am. Chem. Soc., 2013,
135, 5356-5359; c) Q. H. Deng, et al., Chem. Eur. J., 2014, 20, 93-
97; d) Q. H. Deng, H. Wadepohl, L. H. Gade, J. Am. Chem. Soc.,
Scheme 4. Mechanistic proposal for the chromium(II)-catalyzed hydrosilylation of
ketones.
Based on these initial mechanistic experiments presented
herein and our previously reported results in the related
iron(II)- and manganese(II)-catalyzed hydrosilylations, we
propose a catalytic cycle consisting of three critical steps
(Scheme 4):6b,e,7a After activation of the chromium(II) alkyl
precatalyst and formation of a hypothetical Cr(II)-H species,
ketone coordination (I) and insertion into the Cr-H bond (II)
occurs. Subsequent σ-bond metathesis regenerates the
hydride and releases the product (III). This proposed direct
hydride transfer pathway is consistent with labelling- and
Hammett correlation studies as well as the absence of radical
intermediates.
In conclusion, we have designed and isolated the first
chromium(II)-based precatalyst for the highly enantioselective
hydrosilylation of a broad range of ketones containing various
functional groups. This work emphasizes the application of
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins