4
Tetrahedron
The recyclability of the ionic liquid supported Cu(II) catalyst 4
5. References and notes
was also examined. After finishing one run of reaction, another
cycle of the reaction was carried out using the same catalyst 4. It
has been observed that the ionic liquid supported Cu(II) catalyst 4
is effective and recyclable catalyst for the 1,3-dipolar
cycloaddition reaction leading to the regioselective synthesis of
1,4-disubstituted 1,2,3-triazole 7a with excellent yields of 75-80%
after third cycle of reaction.
1. (a) Kim, J.; Kim, H.; Park, S. B. J. Am. Chem. Soc. 2014, 136,
14629. (b) Koh, M.; Park, J.; Koo, J. Y.; Lim, D.; Cha, M. Y.; Jo,
A.; Choi, J. H.; Park, S. B. Angew. Chem., Int. Ed. 2014, 53,
5102. (c) Kuruvilla, F. G.; Shamji, A. F.; Sternson, S. M.;
Hergenrother, P. J.; Schreiber, S. L. Nature 2002, 416, 653.
2. (a) Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168.
(b) Zhu, J.; Bienaymé, H., Eds. Multicomponent Reactions;
Wiley-VCH: Weinheim, Germany, 2005.
3. (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem.
Int. Ed. 2001, 40, 2004. (b) Tornøe, C. W. Christensen, C.;
Meldal, M. J. Org. Chem., 2012, 67, 3057.
4. (a) Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J.
Org. Chem. 2006, 51. (b) Meldal, M.; Tornøe, C. W. Chem. Rev.
2008, 108, 2952. (c) Amblard, F.; Cho, J. H.; Schinazi, R. F.
Chem. Rev. 2009, 109, 4207. (d) Berg, R.; Straub, B. F. Beilstein
J. Org. Chem. 2013, 9, 2715. (e) Haldón, E.; Nicasio, M. C.;
Pérez, P. J. Org. Biomol. Chem. 2015, 13, 9528.
After successfully conducted the regioselective syntheses of
1,4-disubstituted 1,2,3-triazoles, we plan to extend our
methodology for the synthesis of rufinamide 9 as antiepileptic
drug, through this multi-component synthetic strategy. The
previous synthetic methodologies involved for the synthesis of
this drug molecule via multistep procedures, and its synthesis
requires the use of a high temperature (135 ºC) and long reaction
times typically more than 24 hour.25 The synthetic conditions are
tedious and involved the use of explosive azides.
CH3
H3C
N
N
+
+
N
O
O
O
N
N
F
F
N
Cu
N
5. (a) Bonandi, E.; Christodoulou, M. S.; Fumagalli, G.;
Perdicchia, D.; Rastelli, G.; Passarella, D. Drug Discov. Today
2017, 22, 1572. (b) Bunders, C.; Cavanagh, J.; Melander, C. Org.
Biomol. Chem. 2011, 9, 5476. (c) Minvielle, M. J.; Bunders, C.
A.; Melander, C. MedChemComm 2013, 4, 916. (d) Ballard, T.
E.; Richards, J. J.; Wolfe, A. L.; Melander, C. Chem. Eur. J.
2008, 14, 10745.
BF4
BF4
2.5 mol%
MeOH, reflux,3h
O
O
Br
NH2
4
F
NaN3
+
+
NH2
O
F
8e
6e
9
Rufinamide , 87%
Scheme 3. One-pot multicomponent synthesis of rufinamide
using ionic liquid supported Cu(II) catalyst.
6. (a) Kant, R.; Singh, V.; Nath, G.; Awasthi, S. K. Eur. J. Med.
Chem. 2016, 124, 218. (b) Yadav, P.; Lal, K.; Kumar, A.; Guru,
S. K.; Jaglan, S.; Bhushan, Sh. Eur. J. Med. Chem. 2017, 126,
944. (c) Darandale, S. N.; Mulla, N. A.; Pansare, D. N.;
Sangshetti, J. N.; Shinde, D. B. Eur. J. Med. Chem. 2013, 65,
527.
7. (a) Paeshuyse, J.; Dallmeier, K.; Neyts, J. Curr Opin Virol.
2011, 1, 590. (b) Yang, Y.; Rasmussen, B. A.; Shlaes, D. M.
Pharmacol. Ther. 1999, 83, 141. (c) Linares, D.; Bottzeck, O.;
Pereira, O.; Praud-Tabaries, A.; Blache, Y. Bioorg. Med. Chem.
Lett., 2011, 21, 6751.
We decided that rufinamide 9 could be synthesized through a
multi-component reaction by employing 2,6-difluorobenzyl
bromide 8e, NaN3, and propiolamide 6e as shown in scheme 3 in
the presence of ionic liquid supported Cu(II) 4 as the catalysts.
Interestingly, the product yield of designed rufinamide 9 was
obtained in 87% yield in 3h at refluxing methanol solution. The
synthesis demonstrated the huge advantage of using ionic liquid
supported Cu(II) catalyst for the synthesis of this drug molecule.
3. Conclusions
In summary, we have developed a versatile synthetic strategy
for 1,4-disubstuituted 1,2,3-triazole derivatives through an ionic
liquid supported Cu(II) catalyst precatalyst in methanol under
microwave irradiation. Further, the catalyst is thermally stable,
green, easy to prepare, and devoid of any drawback normally
associated with homogeneous catalysts. The key features of the
present protocol was the in-situ reduction of ionic liquid
supported Cu(II) catalyst to Cu(I) followed by the formation of
1,2,3-triazole moieties in one-pot multicomponent pathway. The
synthetic manipulation demonstrates the sufficient substrate
scope, high yields and environmentally benign conditions.
Further, the use of microwave irradiation in the present synthetic
sequence demonstrated the dramatic reduction of reaction times
in minutes with excellent yields and high selectivity. This
synthetic methodology can open up avenues for further
development of various diverse heterocycles catalyzed by ionic
liquid supported Cu(II) catalyst. Finally, the current synthetic
protocol useful for the one-pot synthesis of an antiepileptic drug
rufinamide in good yield.
8. (a) Meldal, M.; Tornøe, C. W. J. Org. Chem., 2002, 67, 3057.
(b) Rostovsev, V. V.; Fokin, V. V.; Green, L. G.; Sharpless, K.
B. Angew Chem. Int. Ed., 2002, 41, 2596. (c) Ackermann, L.;
Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org. Lett., 2008,
10, 3081. (d) Qin, A.; Lam, J. W. Y.; Tang, L.; Jim, C. J. W.;
Zhao, H.; Sun, J.; Tang, B. Z. Macromolecules 2009, 42, 1421.
9. Moore, E.; McInnes, S. J.; Vogt, A.; Voelker, N. H.
Tetrahedron Lett. 2011, 52, 2327.
10. Chassaing, S.; Sido, A. S. S.; Alix, A.; Kumarraja, M.; Pale,
P. Chem. Eur. J. 2008, 14, 6713.
11. Yousuf, S. K.; Mukherjee, D.; Singh, B.; Maity, S.; Taneja,
S. C. Green Chem. 2010, 12, 1568.
12. Lee, C.-T.; Huang, S.; Lipshutz, B. H. Adv. Synth. Catal.
2009, 351, 3139.
13. Wang, K.; Bi, X.; Liao, P.; Fang, Z.; Meng, X.; Zhang, Q.;
Liu, Q.; Ji, Y. Green Chem. 2011, 13, 562.
14. (a) Chanda, K.; Rej, S, Huang, M. H. Chem. Eur. J, 2013,
19, 16036. (b) Tsai, Y. H.; Chanda, K.; Chu, Y. T.; Chiu, C.-Y.;
Huang, M. H. Nanoscale, 2014, 6, 8704.
15. Larin, E. M.; Lautens, M. Angew Chem. Int. Ed., 2019, 58,
13438.
16. Lal, K.; Rani, P. Arkivoc 2016, 307.
4. Acknowledgements
The authors thank the Chancellor and Vice Chancellor of VIT
University for providing opportunity to carry out this study.
Further the authors wish to thank the management of this
university for providing seed money as research grant. R
Nishanth Rao thanks for ICMR-SRF ship. Kaushik Chanda
thanks ICMR-Govt of India for funding through Grant no
45/03/2019-BIO/BMS.
17. (a) Kuang, G.-C.; Guha, P. M.; Brotherton, W. S.; Simmons,
J. T.; Stankee, L. A.; Nguyen, B. T.; Clark, R. J.; Zhu, L. J. Am.
Chem. Soc. 2011, 133, 13984. (b) Michaels, H. A.; Zhu, L.
Chem. Asian J. 2011, 5, 2825. (c) Guha, P. M.; Phan, H.; Kinyon,
J. S.; Brotherton, W. S.; Sreenath, K.; Simmons, J. T.; Wang, Z.;
Clark, R. J.; Dalal, N. S.; Shatruk, M.; Zhu, L. Inorg. Chem.