Table 2 Dependence of chemo-, regio- and diastereoselectivity of the o-
DPPB-directed hydroformylation of allylic esters 5 on substrate structure
Table 3 Regio- and diastereoselectivity for o-DPPB-directed hydro-
formylation of mono-substituted allylic esters 9
Conv.a,b
(%)
dr (6)a
Conv.a,b
(%)
dr (10)a
12a (%) rsa (10 : 11) (anti : syn)
Entry Major product
1
8a (%) rsa (6 : 7) (anti : syn)
Entry Major product
1
> 97
5
64 : 36
91 : 9
90
90
3
91 : 9
95 : 5
2
3
90
90
3
8
86 : 14
83 : 17
95 : 5
2
< 2
39
5
90 : 10
61 : 39
92 : 8
98 : 2
58 : 42
92 : 8
3
4
from cis-5 (R = Bn) 40
86 : 14
90
91
95
4
92
19
84 : 16
88 : 12
a See footnotes a, b in Table 2. b See footnotes a, b in Table 2.
5
6
3
7
98 : 2
87 : 13
91 : 9
Notes and references
90 : 10
‡ The anti-stereochemical relation of 6 (R = Bn) and 10 (R = i-Pr) could
be determined upon chemical transformation into the benzylidene acetals 13
and 14, respectively, employing the following reaction sequence: i LiAlH4,
ether, 0 °C; ii PhCH(OMe)2, TsOH cat., CH2Cl2, rt. Inspection of coupling
constants as well as NOESY data allowed assignment of relative
configuration.
a Determined from NMR analysis of the crude reaction product. b Chemose-
lectivity towards aldehyde formation was 100% in all cases.
1 C. D. Frohning and C. W. Kohlpaintner, in Applied Homogeneous
Catalysis with Organometallic Compounds, ed. B. Cornils and W. A.
Herrmann, Wiley-VCH, Weinheim, 2000, ch. 2.1.
2 B. Breit and W. Seiche, Synthesis, 2001, 1.
3 B. Breit, Chem. Eur. J., 2000, 6, 1519.
4 I. J. Krauss, C. C.-Y. Wang and J. L. Leighton, J. Am. Chem. Soc., 2001,
123, 11514; R. W. Jackson, P. Perlmutter and E. E. Tasdelen, J. Chem.
Soc., Chem. Commun., 1990, 763; S. D. Burke and J. E. Cobb,
Tetrahedron Lett., 1986, 27, 4237.
5 B. Breit, G. Heckmann and S. K. Zahn, Chem. Eur. J., 2003, 9, 425; B.
Breit, Liebigs Ann., 1997, 1841; B. Breit, Angew. Chem., 1996, 108,
3021; B. Breit, Angew. Chem., Int. Ed. Engl., 1996, 35, 2835.
6 B. Breit and S. K. Zahn, J. Org. Chem., 2001, 66, 4870; B. Breit, M.
Dauber and K. Harms, Chem. Eur. J., 1999, 5, 1819.
7 E. M. Carreira, Aldol Reaction: Methodology and Stereochemistry in
Modern Carbonyl Chemistry, ed. J. Otera, Wiley-VCH, Weinheim, 2000,
ch. 8; M. Braun, J. S. McCallum and L. S. Liebeskind, in Methods of
Organic Chemistry (Houben-Weyl) – Stereoselective Synthesis, E 21, ed.
G. Helmchen, R. W. Hoffmann, J. Mulzer and E. Schaumann, Thieme,
Stuttgart, 1996, pp. 1603–1735.
8 D. Hoppe, W. R. Roush and E. J. Thomas, in Methods of Organic
Chemistry (Houben-Weyl) – Stereoselective Synthesis, E 21, ed. G.
Helmchen, R. W. Hoffmann, J. Mulzer and E. Schaumann, Thieme,
Stuttgart, 1996, ch. 1.3.3; S. R. Chemler and W. R. Roush, Recent
Applications of the Allylation Reaction to the Synthesis of Natural
Products in Modern Carbonyl Chemistry, ed. J. Otera, Wiley-VCH,
Weinheim, 2000, ch. 11.
Scheme 1 Conditions: (i) 1.8 mol% [Rh(CO)2acac], 3 mol% P(OPh)3, H2/
CO (1 : 1) 40 bar, toluene, 30 °C, 46 h.
of the anti-aldol retron 10 as the major product. Interestingly,
aldehyde 10 represents a potentially valuable building block for the
synthesis of polypropionates.
In conclusion, o-DPPB-directed regio- and diastereoselective
hydroformylation of 1,3-disubstituted and mono-substituted allylic
o-DPPB esters 3 could be achieved. This methodology gives access
to the anti-aldol retron which is difficult to reach through aldol
chemistry directly. Thus, directed hydroformylation may become a
synthetically attractive alternative to established aldol7 or allylme-
tal8 chemistry for the construction of anti-aldol retron type
products.
We thank DFG, the Fonds of the Chemical Industry and the
Krupp Foundation (Krupp Award for young university teachers to
BB) for financial support.
C h e m . C o m m u n . , 2 0 0 4 , 1 1 4 – 1 1 5
115