Communications
Table 4: Syn-selective dihydroxyacetone aldol reactions catalyzed by 3.[a]
1,6-diphosphate aldolase, respectively. Thus, the activities of
each of natureꢀs four dihyroxyacetone aldolases can now be
effectively mimicked using organocatalysis. The data pre-
sented here provide further support for our original hypoth-
esis that amino acid catalysis played a key role in prebiotic
chemistry by facilitating the asymmetric synthesis of the
molecules of life.[6a] Further studies concerned with the
expansion of the scope of this chemistry in aldol, Mannich,
and Michael-type reactions are currently underway.
Entry
1
R
Prod. t [days] Yield[b] [%] d.r.[c]
ee [%][c]
(syn/anti) (syn/anti)
8
0.7
76
15:1
15:1
92/20
98/24
Received: March 22, 2007
Published online: June 19, 2007
2.3
2.3
92
2
3
4
5
10
11
12
13
88[d]
>100:1[e] >99[e]
1.9
1.9
82
8:1
10:1
96/74
–
Keywords: aldehydes · aldol reaction · asymmetric catalysis ·
.
91[d]
enamines · organocatalysis
2.1
0.7
85
62
11:1
7:1
92/54
92/12
[1] a) T. M. Wrodnigg, F. K. Sprenger, Mini-Rev. Med. Chem. 2004,
4, 437 – 459; b) D. B. Werz, P. H. Seeberger, Chem. Eur. J. 2005,
11, 3194 – 3206; c) J. J. Barchi, Jr., Curr. Pharm. Des. 2000, 6,
485 – 501.
14
6
2
65
12:1
6
97g]
15[f]
79[g]
33:1[g]
7
8
16
17
3.5
72
7:1
92/62
[2] a) K. C. Nicolaou, H. J. Mitchell, Angew. Chem. 2001, 113, 1624 –
1672; Angew. Chem. Int. Ed. 2001, 40, 1576 – 1624; b) P. H.
Seeberger, D. B. Werz, Nat. Rev. Drug Discovery 2005, 4, 751 –
763; c) P. Sears, C.-H. Wong, Science 2001, 291, 2344 – 2350; d) S.
Hanessian in Preparative Carbohydrate Chemistry, Marcel
Dekker, New York, 1997; e) T. Hudlicky, D. A. Entwistle,
K. K. Pitzer, A. J. Thorpe, Chem. Rev. 1996, 96, 1195 – 1220;
f) S. J. Danishefsky, K. F. McClure, J. T. Randolph, R. B. Rug-
geri, Science 1993, 260, 1307 – 1309; g) S. Y. Ko, A. W. M. Lee, S.
Masamune, L.A. Reed III, K. B. Sharpless, F. J. Walker, Science
1983, 220, 949 – 951.
[3] a) C.-H. Wong, M. C. Bryan, P. T. Nyffeler, H. Liu, E. Chapman,
Pure Appl. Chem. 2003, 75, 179 – 186; b) K. M. Koeller, C.-H.
Wong, Nature 2001, 409, 232 – 240; c) C.-H. Wong, T. D. Macha-
jewski, Angew. Chem. 2000, 112, 1406 – 1430; Angew. Chem. Int.
Ed. 2000, 39, 1352– 1375; d) W. D. Fessner, V. Helaine, Curr.
Opin. Biotechnol. 2001, 12, 574 – 586; e) D. Franke, T. Macha-
jewski, C. C. Hsu, C.-H. Wong, J. Org. Chem. 2003, 68, 6828 –
6831.
3
3
21
28
5:1
9:1
99/28
>99/92[h]
[a] See the Supporting Information for detailed reaction conditions.
Typical reaction conditions: a mixture of aldehyde (0.5 mmol), ketone
(0.5 mmol as dimer, 1 mmol as monomer), catalyst (20 mol%), and 9
(10 mol%) in DMF (0.5 mL) was stirred at RT. [b] Yield of isolated
product after purification by column chromatography. [c] Determined by
HPLC on a chiral stationary phase. [d] Yield of isolated product when the
reaction was performed on 15 mmol scale. [e] After a single recrystal-
lization. [f] Excess aldehyde used. [g] Yield of unacetylated trihydroxyke-
tone 15 after recrystallization; d.r. and ee values calculated after
acetylation. [h] Added 3 vol% of water instead of 9.
[4] W. Notz, F. Tanaka, C. F. Barbas III, Acc. Chem. Res. 2004, 37,
580.
[5] For reviews, see: a) M. Limbach, Chem. Biodiversity 2005, 2,
825 – 836; b) U. Kazmaier, Angew. Chem. 2005, 117, 2224 – 2226;
Angew. Chem. Int. Ed. 2005, 44, 2186 – 2188; c) F. Tanaka, C. F.
Barbas III in Enantioselective Organocatalysis, Reactions and
Experimental Procedures (Ed.: P. I. Dalko), Wiley-VCH, Wein-
heim, 2007, pp. 19 – 55.
[6] For selected references, see: a) N. S. Chowdari, D. B. Ramach-
ary, A. Cordova, C. F. Barbas III, Tetrahedron Lett. 2002, 43,
9591; b) A. B. Northrup, D. W. C. MacMillan, Science 2004, 305,
1752– 1755; c) D. Enders, C. Grondal, Angew. Chem. 2005, 117,
1235 – 1238; Angew. Chem. Int. Ed. 2005, 44, 1210 – 1212; d) J. T.
Suri, D. B. Ramachary, C. F. Barbas III, Org. Lett. 2005, 7, 1383 –
1385; e) D. Enders, C. Grondal, M. Vrettou, G. Raabe ; Angew.
Chem. 2005, 117 4147 – 4151; Angew. Chem. Int. Ed. 2005, 44,
4079 – 4083; f) J. T. Suri, S. Mitsumori, K. Albertshofer, F.
Tanaka, C. F. Barbas III, J. Org. Chem. 2006, 71, 3822 – 3828;
g) D. Enders, M. Vrettou, Synthesis 2006, 2155 – 2158; h) C.
Grondal, D. Enders, Tetrahedron 2006, 62, 329 – 337; i) D.
Enders, J. Palecek, C. Grondal, Chem. Commun. 2006, 655 –
657; j) D. Enders, T. Gasperi, Chem. Commun. 2007, 88 – 90;
k) C. Grondal, D. Enders, Adv. Synth. Catal. 2007, 349, 694 – 702.
Scheme 1. Predicted transition states I and II for the reactions
catalyzed by O-tBu-l-Thr and l-proline, respectively.
In summary, we have developed highly enantioselective
syn-aldol reactions that involve unprotected dihydroxyace-
tone. The unprotected dihydroxyacetone is a significantly
more economical starting material than the protected variants
that have been used in proline- and enzyme-catalyzed
reactions.[10] The reactions catalyzed by O-tBu-l-Thr and O-
tBu-d-Thr are organocatalytic mimics of the reactions cata-
lyzed by l-rhamnulose 1-phosphate aldolase and d-fructose
5574
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 5572 –5575