Green Chemistry
Communication
i-PrOH were performed under otherwise identical reaction con-
ditions. GVL was obtained in yields of 32%, 8%, 17%, 40%,
and >99%, respectively (Fig. 4b, entries iii–vi, and Fig. 3a).
These results indicate that the presence of the hydrogen trans-
fer reagent i-PrOH could significantly promote the hydrogen-
ation of LA to GVL. However, the yield of GVL in pure water
could be further increased to 80% (Fig. 4b, entry vii) upon
increasing the catalyst loading to 0.12 mol% and extending
the reaction time (48 h), suggesting that the porous coordi-
nation assemblies 3a could readily catalyse the hydrogenation
of LA in high yield without the help of any “hydrogen transfer”
solvent. Therefore, we envisage that the synergistic effect
between i-PrOH and the single-site 3D porous catalyst is
responsible for the excellent catalytic performance of the
protocol.
P. C. A. Bruijnincx, L. Lin, A. Wang and T. Zhang, Green
Chem., 2019, 21, 3744–3768.
3 (a) P. A. Willems, Science, 2009, 325, 707–708;
(b) E. L. Kunkes, D. A. Simonetti, R. M. West, J. C. Serrano-
Ruiz, C. A. Gartner and J. A. Dumesic, Science, 2008, 322,
417–421; (c) A. Corma, S. Iborra and A. Velty, Chem. Rev.,
2007, 107, 2411–2502.
4 (a) M. H. Kamani, I. Eş, J. M. Lorenzo, F. Remize,
E. Roselló-Soto, F. J. Barba, J. H. Clark and
A. M. Khaneghah, Green Chem., 2019, 21, 3213–3231;
(b) X. Liu, F. P. Bouxin, J. Fan, V. L. Budarin, C. Hu and
J. H. Clark, ChemSusChem, 2020, 13, 4296–4237;
(c) R. J. White;, V. Budarin;, R. Luque;, J. H. Clark and
D. J. Macquarrie, Chem. Soc. Rev., 2009, 38, 3401–3418.
5 Y. Gu and F. Jerome, Chem. Soc. Rev., 2013, 42, 9550–9570.
2
1
6
M. Besson, P. Gallezot and C. Pinel, Chem. Rev., 2014, 114,
827–1870.
7 (a) M. J. Climent, A. Corma and S. Iborra, Green Chem.,
014, 16, 516–547; (b) Y. Liu, Y. Nie, X. Lu, X. Zhang, H. He,
F. Pan, L. Zhou, X. Liu, X. Ji and S. Zhang, Green Chem.,
019, 21, 3499–3535; (c) Z. Xue, D. Yu, X. Zhao and T. Mu,
1
Conclusions
2
In summary, a series of spherical self-supported N-heterocyclic
carbene-iridium assemblies were prepared which exhibited
excellent activities and selectivities towards the hydrogenation
of levulinic acid (LA) to γ-valerolactone (GVL) under the atmos-
pheric pressure of hydrogen. Quantitative yields and selectiv-
ities could be achieved by these single-site solid molecular cat-
alysts at catalyst loadings as low as 0.02 mol%. A catalyst could
be readily recovered and reused for 9 runs without obvious
2
Green Chem., 2019, 21, 5449–5468.
8
(a) D. M. Alonso, J. Q. Bond and J. A. Dumesic, Green
Chem., 2010, 12, 1493–1513; (b) J. Q. Bond, D. M. Alonso,
D. Wang, R. M. West and J. A. Dumesic, Science, 2010, 327,
1
110–1114; (c) D. M. Alonso, S. G. Wettstein and
J. A. Dumesic, Green Chem., 2013, 15, 584–595;
d) J. S. Luterbacher, J. M. Rand, D. M. Alonso, J. J. Han,
loss of selectivity and activity. Remarkably, a TON of up to 2.1
(
5
×
10 was achieved. The porosity of the catalysts is believed to
T. Youngquist, C. T. Maravelias, B. F. Pfleger and
J. A. Dumesic, Science, 2014, 343, 277–280.
facilitate this crucial transformation under atmospheric
pressure of hydrogen. Our protocol may facilitate future indus-
trial biomass valorization under mild reaction conditions.
9
(a) D. Sun, S. Sato, W. Ueda, A. Prim, H. Gatcia and
A. Croma, Green Chem., 2016, 18, 2579–2597; (b) L. Yan,
Q. Yao and Y. Fu, Green Chem., 2017, 19, 5227–5547.
1
0 (a) C. G. S. Lima, J. L. Monteiro, T. D. M. Lima,
M. W. Paixao and A. G. Correa, ChemSusChem, 2018, 11,
Conflicts of interest
2
2
5–47; (b) K. Yan, Y. Yang, J. Chai and Y. Lu, Appl. Catal., B,
015, 179, 292–304.
The authors declare no competing interests.
1
1 W. Wang, S. Wang, X. Ma and J. Gong, Chem. Soc. Rev.,
011, 40, 3703–3727.
2 (a) W. Li, J.-H. Xie, H. Lin and Q.-L. Zhou, Green Chem.,
012, 14, 2388–2390; (b) S. Wang, H. Huang, V. Dorcet,
2
Acknowledgements
1
2
Financial support from the National Key R&D Program of
China (no. 2016YFA0202902), the National Natural Science
Foundation of China (no. 21871059, and 21861132002), and
the Department of Chemistry at Fudan University is gratefully
acknowledged.
T. Roisnel, C. Bruneau and C. Fischmeister,
Organometallics, 2017, 36, 3152–3162; (c) J. Deng, Y. Wang,
T. Pan, Q. Xu, Q.-X. Guo and Y. Fu, ChemSusChem, 2013, 6,
1163–1167.
1
3 (a) M. G. Al-Shaal, W. R. H. Wright and R. Palkovits, Green
Chem., 2012, 14, 1260–1263; (b) E. Jansen, L. S. Jongbloed,
D. S. Tromp, M. Lutz, B. Bruin and C. J. Elsevier,
ChemSusChem, 2013, 6, 1737–1744; (c) A. M. R. Galletti,
C. Antonetti, V. De Luise and M. A. Martinelli, Green Chem.,
2012, 14, 688–694; (d) J. Lv, Z. Rong, L. Sun, C. Liu,
A.-H. Lu, Y. Wang and J. Qu, Catal. Sci. Technol., 2018, 8,
975–979; (e) S. Cao, J. R. Monnier, C. T. Williams, W. Diao
and J. R. Regalbuto, J. Catal., 2015, 326, 69–81.
Notes and references
1
(a) M. Usman, H. Chen, K. Chen, S. Ren, J. H. Clark, J. Fan,
G. Luo and S. Zhang, Green Chem., 2019, 21, 1553–1572;
(
b) Y. Kim and C.-J. Li, Green Synth. Catal., 2020, 1, 1–11.
2
(a) X. Sheng, N. Li, G. Li, W. Wang, A. Wang, Y. Cong,
X. Wang and T. Zhang, Green Chem., 2016, 18, 3707–3711;
(
b) W. Cao, W. Luo, H. Ge, Y. Su, A. Wang and T. Zhang, 14 C. Ortizcervantes, M. Floresalamo and J. J. Garcia, ACS
Green Chem., 2017, 19, 2201–2211; (c) W. Luo, W. Cao, Catal., 2015, 5, 1424–1431.
This journal is © The Royal Society of Chemistry 2021
Green Chem., 2021, 23, 5037–5042 | 5041