e-mail: c.mateos@lilly.com
aCurrent address: Envirohemp, Logroño, Spain
bCurrent address: ILS-Integrated Lab Solutions GmbH, Berlin, Germany
1 Seminal paper: Miyaura, N.; Yamada, K.; Suzuki A. Tetrahedron Lett. 1979, 36, 3437-3440.
2 Kozlowski, M. C.; Morgana B. J.; Lintona E. C. Chem. Soc. Rev. 2009, 38, 3193-3207.
3Dmitrii N. K., Nikolay A. B. Tetrahedron Lett. 2006, 47, 4225-4229. (b) Lu G, Franzén R., Zhang Q., Xu Y. Tetrahedron
Lett. 2005, 46, 4255-4259.
4 Blaser, H-U.; Indolese, A.; Schnyder, A.; Steiner, H.; Studer, M. J. Mol. Cat. A: Chemical 2001, 173, 3–18.
5 Recent Suzuki-Miyaura reactions in aqueous media: (a) Liua, H.; Liua, B. H.; Lia, R.; Chena H. Tetrahedron Lett. 2014, 55,
415-418. (b) Edwards, G. A.; Trafford, M. A.; Hamilton, A. E.; Buxton, A. M.; Bardeaux, M. C.; Chalker, J. M. J. Org. Chem.,
2014, 79, 2094-2104. (c) Liu, C.; Rao, X.; Zhang, Y.; Li, X.; Qiu, J.; Jin Z. Eur. J. Org. Chem. 2013, 20, 4345–4350. (d) For a
recent review see: Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A. ChemSusChem. 2010, 3, 502-522.
6
(a) Kitamura, Y.; Sako, S.; Tsutsui, A.; Monguchi, Y.; Maegawa, T.; Kitade, Y.; Sajikia, H. Adv. Synth. Catal. 2010, 352,
718–730. (b) Rothenberg, G.; Gaikwad, A. V.; Holuigue, A.; Thathagar, M. B.; ten Elshof J.E. Chem. Eur. J. 2007, 13, 6908–
6913 (c) Khinast, J. G. et al, Applied Catalysis A: General 2007, 325, 76–86.
7 Crowl, A.; Louvar, J. F. Chemical Process Safety: Fundamentals with Applications; Prentice Hall, 2011.
8 For recent examples of Suzuki cross-couplings in continuous flow using a supported Pd-ligand complex see: Muñoz, J. de M.;
Alcazar, J.; de la Hoz, A.; Diaz-Ortiz, A. Adv. Synth. Catal. 2012, 354, 3456–3460. For a review see: Nöel, T.; Buchwald, S. L.
Chem. Soc. Rev. 2011, 40, 5010-5029.
9 (a) Newman, S. G.; Jensen, K. F. Green Chemistry 2013, 15, 1456-1472. (b) Vadula, B. R.; Gonzalez, M. A. Chemistry
Today 2013, 31, 16-20.
10 Shang, M.; Noël, T.; Wang, Q.; Hessel, V. Chem. Eng. & Tech. 2013, 36, 1001-1009.
11
(a) Boodhoo, K.; Harvey, A. Process Intensification Technologies for Green Chemistry: Engineering Solutions for
Sustainable Chemical Processing; Wiley-Blackwell, 2013. (b) Damm, M.; Glasnov, T. N.; Kappe, C. O. Org. Process Res.
Develop. 2010, 14, 215-224. (c) Kumar, V.; Nigam, K. D. P. Green Processing and Synthesis 2012, 1, 79. (c) Hessel, V. Chem.
Eng. & Tech. 2009, 32, 1655-1681.
12
Palladium packed bed cartridges are available on various supports: none (Pd black), charcoal (standard and powder type),
alumina and silica.
13 The void volume for an H-Cube MIDI cartridge is around 1-1.2 mL (measured experimentally).
14 Estimated residence time is 20 seconds based on calculated cartridge void volume.
15 The equipment setup consisted of a new external syringe pump that injected the reactant solution into the cartridge, placed in
the H-Cube MIDI for temperature control. The output of the cartridge was connected to a 100 psi back pressure regulator (to
prevent gas bubble formation and ensure accurate residence times).
16 The difference between the powder type and the 10% Pd/C are in the particle size; the powder type is sieved to be higher than
32 micron, and so has a larger active surface area compared to the 10% Pd/C, which is of 20-40 mesh.
17 For recyclable Pd catalysts in cross-coupling reactions see: Nasir Baig, R. B.; Varma, R. S. Chem. Commun. 2013, 49, 752.
18 Koenig S. G. Scalable Green Chemistry, Pam Standford Publishing, 2013.
19 The same catalyst cartridge was under continuous operation for 18 h.
20
Representative large-scale continuous-flow procedure: A solution of 2-iodo-benzonitrile (100 g, 1,00 equiv; 436,64
mmoles) and phenylboronic acid (1 equiv , 436,64 mmoles; 53,24 g) in 2-propanol (1800 mL) was combined with a solution of
10