N. Shahnaz and P. Das
Table 3. Optimization of temperature and catalyst quantity for Suzuki–
Conclusions
Miyaura cross-coupling reaction of 4-chloronitrobenzene with
a
phenylboronic acid with complex 2 as catalyst
In summary, we have developed a highly stable Pd complex
composed of phosphine and Schiff base ligands, and successfully
performed the cross-coupling reactions of various aryl bromides
in water and aryl chlorides in DMF with a low catalyst loading
b
Entry
Catalyst (mol%)
Temp. (°C)
Time (h)
Yield (%)
(<0.5 mol %). The catalytic system could also effectively activate
sterically demanding aryl halides.
1
2
3
4
5
6
1
26
60
80
80
80
80
24
12
6
34
76
1
1
100
100
57
Acknowledgments
0.5
0.25
0.1
6
12
12
The Council of Scientific and Industrial Research (CSIR), New Delhi,
is gratefully acknowledged for financial support (grant no.
02/0081/12). N.S. thanks the University Grants Commission (UGC),
New Delhi, for a BSR-RFSMS fellowship.
32
a
Reaction conditions: 4-chloronitrobenzene (0.5 mmol), phenylboronic
acid (0.75 mmol), K
2
CO
3
(1.5 mmol), DMF (4 ml).
b
GC yields.
References
[
1] a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; b) C. Torborg,
Table 4. Suzuki–Miyaura reactions of various aryl and heteroaryl chlo-
rides and arylboronic acids with complex 2 as catalyst
M. Beller, Adv. Synth. Catal. 2009, 351, 3027; c) A. Fihri, M. Bouhrara,
B. Nekoueishahraki, J.-M. Basset, V. Polshettiwar, Chem. Soc. Rev.
a
2011, 40, 5181; d) M. Blangetti, H. Rosso, C. Prandi, A. Deagostino,
P. Venturello, Molecules 2013, 18, 1188; e) A. J. J. Lennox,
G. C. Lloyd-Jones, Chem. Soc. Rev. 2014, 43, 412.
[
2] a) H. Li, C. C. C. J. Seechurn, T. J. Colacot, ACS Catal. 2012, 2, 1147; b)
C. C. C. J. Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew.
Chem. Int. Ed. 2012, 51, 5062; c) L. Qi, X. Zhou, X. Li, W. Li, M. Lv,
M. Guo, Appl. Organometal. Chem. 2015, 29, 244; d) F. Rajabi,
W. R. Thiel, Adv. Synth. Catal. 2014, 356, 1873.
b
Entry
R–Cl
Cl
R′
Time (h) Yield (%)
1
2
3
4
5
6
7
8
9
4-CHOC
4-COCH
4-OCH
H
6 4
C
C
C
C
C
C
C
C
C
C
C
C
6
6
6
6
6
6
6
6
6
6
6
6
H
H
H
H
H
H
H
H
H
H
H
H
5
5
5
5
5
5
5
5
5
5
5
5
6
6
94
88
89
98
62
82
75
81
83
85
91
94
84
86
34
C H
3 6 4
Cl
3 6 4
C H Cl
8
[3] a) D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120,
9722; b) J. P. Wolfe, S. L. Buchwald, Angew. Chem. Int. Ed. 1999, 38,
4-NO
2-NO
2
C
C
6
H
H
4
Cl
Cl
6
2413; c) M. Joshaghani, E. Faramarzi, E. Rafiee, M. Daryanavard,
2
6
4
8
J. Xiao, C. Baillie, J. Mol. Catal. A 2006, 259, 35.
4-CH
3-CH
2
OHC
OHC
6
H
H
4
Cl
Cl
6
[
4] a) A. N. Marziale, S. H. Faul, T. Reiner, S. Schneider, J. Eppinger, Green
Chem. 2010, 12, 35; b) S. J. Sabounchei, M. Ahmadi, Z. Nasri, J. Coord.
Chem. 2013, 66, 411; c) S. J. Sabounchei, M. Ahmadi, M. Panahimehr,
F. A. Bagherjeri, Z. Nasri, J. Mol. Catal. A 2014, 383–384, 249.
2
6
4
8
3-NO
4-CH
Cl
2
C
6
H
4
Cl
Cl
8
3
C
6
H
4
6
[5] a) O. Piechaczyk, M. Doux, L. Ricard, P. le Floch, Organometallics 2005,
10
11
12
13
14
15
C H
6 5
6
24, 1204; b) M. Blug, C. Guibert, X.-F. Le Goff, N. Mézailles, P. Le Floch,
3-Chloropyridine
8
Chem. Commun. 2008, 201.
2-Chlorothiophene
8
[6] a) J. McNulty, K. Keskar, Org. Biomol. Chem. 2013, 11, 2404; b)
S. M. Wong, C. M. So, K. H. Chung, C. H. Luk, C. P. Lau, F. Y. Kwong,
Tetrahedron Lett. 2012, 53, 3754; c) D. Saha, R. Ghosh, R. Dutta,
A. K. Mandal, A. Sarkar, J. Organometal. Chem. 2015, 776, 89.
4-OCH
4-OCH
3
C
6
H
H
4
Cl
Cl
4-ClC
4-CH
6
H
4
8
3
C
6
4
3
C
6
H
4
8
6 5
C H Cl
2-Thenylboronic acid
20
[
7] a) C. M. So, C. P. Lau, F. Y. Kwong, Org. Lett. 2007, 9, 2795; b) W. K. Chow,
O. Y. Yuen, C. M. So, W. T. Wong, F. Y. Kwong, J. Org. Chem. 2012, 77,
543; c) Y.-Y. Chang, Tetrahedron 2013, 69, 2327.
8] a) F. Y. Kwong, K. S. Chan, C. H. Yeung, A. S. C. Chan, Chem. Commun.
a
Reaction conditions: aryl chloride (0.5 mmol), arylboronic acid (0.75
CO (1.5 mmol), DMF (4 ml).
3
mmol), K
2
3
[
b
Isolated yields (average of two runs).
2004, 2336; b) M. Thimmaiah, S. Fang, Tetrahedron 2007, 63, 6879; c)
D. Schaarschmidt, H. Lang, ACS Catal. 2011, 1, 411.
[9] a) H. E. Moll, D. Sémeril, D. Matt, L. Toupet, Adv. Synth. Catal. 2010, 352,
901; b) L. Monnereau, H. E. Moll, D. Sémeril, D. Matt, L. Toupet, Eur. J.
Inorg. Chem. 2014, 1364.
[
[
10] a) M.-N. Birkholz, Z. Freixa, P. W. N. M. van Leeuwen, Chem. Soc. Rev. 2009,
reaction time (entries 1 and 4) and electron-donating para sub-
stituent groups such as –OCH and –CH give good yields (89
3 3
and 83%, respectively) in 8 h reaction time (entries 3 and 9).
The meta-substituted aryl chlorides 3-chlorobenzyl alcohol and
38, 1099; b) M. Kranenburg, P. C. J. Kamer, P. W. N. M. van Leeuwen, Eur. J.
Inorg. Chem. 1998, 155.
11] a) E. G. Dennis, D. W. Jeffery, M. V. Perkins, P. A. Smith, Tetrahedron
2011, 67, 2125; b) A. Krasovskiy, B. H. Lipshutz, Org. Lett. 2011, 13,
3822; c) A. L. Krasovskiy, S. Haley, K. Voigtritter, B. H. Lipshutz, Org.
Lett. 2014, 16, 4066.
3-chloronitrobenzene give moderate yields (entries 7 and 8)
and ortho-substituted 2-chloroanisole gives lower yield probably
due to steric hindrance in a reaction time of 8 h (entry 5). To our de-
light, excellent yields of cross-coupling products are observed with
the heteroaryl chlorides 3-chloropyridine and 2-chlorothiophene
[
12] a) K. Saikia, B. Deb, B. J. Borah, P. P. Sarmah, D. K. Dutta, J. Organometal.
Chem. 2012, 696, 4293; b) J. D. Moseley, P. M. Murray, E. R. Turp,
S. N. G. Tyler, R. T. Burn, Tetrahedron 2012, 68, 6010.
[13] a) B. Banik, A. Tairai, N. Shahnaz, P. Das, Tetrahedron Lett. 2012, 53, 5627;
b) N. Shahnaz, B. Banik, P. Das, Tetrahedron Lett. 2013, 54, 2886.
(entries 11 and 12). Coupling reactions of 4-chloroanisole with 4-
[
14] a) J. Cui, M. Zhang, Y. Zhang, Inorg. Chem. Commun. 2010, 13, 81; b)
T. Mahamoa, M. M. Mogorosi, J. R. Moss, S. F. Mapolie, J. C. Slootweg,
K. Lammertsma, G. S. Smith, J. Organometal. Chem. 2012, 703, 34; c)
A. Dewan, U. Bora, G. Borah, Tetrahedron Lett. 2014, 55, 1689; d)
Y. Liu, J. Wang, Appl. Organometal. Chem. 2009, 23, 476.
Cl- and 4-CH -substituted phenylboronic acids proceed smoothly
3
resulting in high product yields (entries 13 and 14). However,
a lower yield (34%) is obtained with heteroarylboronic acid
(entry 15).
wileyonlinelibrary.com/journal/aoc
Copyright © 2015 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2015, 29, 829–833