Organic Letters
Letter
different ratios of arene and pyridine (see Supporting
Information; biphenyl (6a) was detected as a byproduct).
When 1.5 mL of benzene (4a) and 1.5 mL of pyridine (1a)
were used, 3-phenylpyridine (5a) was obtained as the major
product with a TON of 6.5 (Table 3). Both electron-rich (1e)
and electron-deficient (1c, 1f) pyridines were well tolerated.
para-Xylene also proved to be a good arylation reagent for
pyridine and gave the desired product 5b with a TON of 5.6.
However, when toluene was used as the substrate, the products
were formed in low TON with no regioselectivity.
ACKNOWLEDGMENTS
■
We gratefully acknowledge The Scripps Research Institute and
NIH (NIGMS, 1R01 GM102265) for financial support. This
work is also supported by the NSFC (21302029), the
Fundamental Research Funds for the Central Universities
(HIT.NSRIF.2014064), and Heilongjiang Postdoctoral Science
Foundation (No. LBH-Z14104).
REFERENCES
■
(1) For selected examples, see: (a) Leclerc, N.; Sanaur, S.; Galmiche,
L.; Mathevet, F.; Attias, A.-J.; Fave, J.-L.; Roussel, J.; Hapiot, P.;
Lemaître, N.; Geffroy, B. Chem. Mater. 2005, 17, 502. (b) Johnston, L.
L.; Ursini, A. J.; Oien, N. P.; Supkowski, R. M.; LaDuca, R. L. Inorg.
Chim. Acta 2007, 360, 3619. (c) Gamsey, S.; Miller, A.; Olmstead, M.
M.; Beavers, C. M.; Hirayama, L. C.; Pradhan, S.; Wessling, R. A.;
Singaram, B. J. Am. Chem. Soc. 2007, 129, 1278. (d) Doucet, H.;
Hierso, J.-C. Curr. Opin. Drug Discovery Dev. 2007, 10, 672.
(e) Hodous, B. L.; Geuns-Meyer, S. D.; Hughes, P. E.; Albrecht, B.
K.; Bellon, S.; Bready, J.; Caenepeel, S.; Cee, V. J.; Chaffee, S. C.;
Coxon, A.; Emery, M.; Fretland, J.; Gallant, P.; Gu, Y.; Hoffman, D.;
Johnson, R. E.; Kendall, R.; Kim, J. L.; Long, A. M.; Morrison, M.;
Olivieri, P. R.; Patel, V. F.; Polverino, A.; Rose, P.; Tempest, P.; Wang,
L.; Whittington, D. A.; Zhao, H. J. Med. Chem. 2007, 50, 611.
(f) Wang, Z.; Li, K.; Zhao, D.; Lan, J.; You, J. Angew. Chem., Int. Ed.
2011, 50, 5365.
On the basis of our previous study,9b a plausible mechanism
is proposed for this reaction in Scheme 1. After the formation
Scheme 1. Plausible Mechanism
(2) For selected examples, see: (a) Naber, J. R.; Buchwald, S. L. Adv.
́
́
Synth. Catal. 2008, 350, 957. (b) Bernechea, M.; de Jesus, E.; Lopez-
Mardomingo, C.; Terreros, P. Inorg. Chem. 2009, 48, 4491. (c) Zhou,
W.-J.; Wang, K.-H.; Wang, J.-X. J. Org. Chem. 2009, 74, 5599.
(d) Pham, P. D.; Vitz, J.; Chamignon, C.; Martel, A.; Legoupy, S. Eur.
J. Org. Chem. 2009, 2009, 3249. (e) Kerric, G.; Le Grognec, E.;
Zammattio, F.; Paris, M.; Quintard, J.-P. J. Organomet. Chem. 2010,
695, 103. (f) Louaisil, N.; Pham, P. D.; Boeda, F.; Faye, D.; Castanet,
A.-S.; Legoupy, S. Eur. J. Org. Chem. 2011, 2011, 143. (g) Iranpoor, N.;
Firouzabadi, H.; Davan, E. E.; Rostami, A.; Nematollahi, A. J.
Organomet. Chem. 2013, 740, 123.
(3) For selected examples, see: (a) Quasdorf, K. W.; Antoft-Finch, A.;
Liu, P.; Silberstein, A. L.; Komaromi, A.; Blackburn, T.; Ramgren, S.
D.; Houk, K. N.; Snieckus, V.; Garg, N. K. J. Am. Chem. Soc. 2011, 133,
6352. (b) Baghbanzadeh, M.; Pilger, C.; Kappe, C. O. J. Org. Chem.
2011, 76, 1507. (c) Chen, H.; Huang, Z.; Hu, X.; Tang, G.; Xu, P.;
Zhao, Y.; Cheng, C.-H. J. Org. Chem. 2011, 76, 2338. (d) Liu, N.; Liu,
C.; Yan, B.; Jin, Z. Appl. Organomet. Chem. 2011, 25, 168. (e) Guha, N.
R.; Reddy, C. B.; Aggarwal, N.; Sharma, D.; Shil, A. K.; Bandna; Das,
P. Adv. Synth. Catal. 2012, 354, 2911. (f) Chen, X.; Ke, H.; Chen, Y.;
Guan, C.; Zou, G. J. Org. Chem. 2012, 77, 7572. (g) Yang, J.; Liu, S.;
Zheng, J.-F.; Zhou, J. Eur. J. Org. Chem. 2012, 2012, 6248. (h) Yılmaz,
of intermediate A, with the assistance of the ligand, pyridine
dissociates from Pd(OAc)2 and subsequently adjusts itself to
coordinate to Pd through its π system, thus facilitating the C3−
H activation of pyridine (B). Then a similar C−H activation
process occurs to give bi(hetero)arene-Pd(II) C, which
undergoes reductive elimination to give the desired product.
Finally the Pd is oxidized by Ag+ to regenerate Pd(OAc)2.
In summary, a C3-selective arylation of pyridines with simple
(hetero)arenes has been developed for the first time using a
Pd(OAc)2 catalyst and phenanthroline ligand. These reactions,
upon further development, could potentially provide an
efficient route to 3,3′-bipyridines and 3-arylpyridines.
̈
U.; Deniz, S.; Kucu
̧
kbay, H.; S
̧
ireci, N. Molecules 2013, 18, 3712.
̈
̈
(i) Pascanu, V.; Yao, Q.; Gom
́
ez, A. B.; Gustafsson, M.; Yun, Y.; Wan,
W.; Samain, L.; Zou, X.; Martín-Matute, B. Chem. - Eur. J. 2013, 19,
17483. (j) Liu, L.; Dong, Y.; Tang, N. Green Chem. 2014, 16, 2185.
(k) Li, Y.; Wang, J.; Wang, Z.; Huang, M.; Yan, B.; Cui, X.; Wu, Y.;
Wu, Y. RSC Adv. 2014, 4, 36262.
ASSOCIATED CONTENT
* Supporting Information
■
(4) For selected examples, see: (a) Ackermann, L.; Born, R.; Spatz, J.
H.; Meyer, D. Angew. Chem., Int. Ed. 2005, 44, 7216. (b) Moglie, Y.;
S
The Supporting Information is available free of charge on the
Mascaro,
38, 3861.
́
E.; Nador, F.; Vitale, C.; Radivoy, G. Synth. Commun. 2008,
(5) Liu, Z.; Dong, N.; Xu, M.; Sun, Z.; Tu, T. J. Org. Chem. 2013, 78,
7436.
1
Experimental procedures and H and 13C NMR spectra
(6) For selected examples, see: (a) Vinh Huynh, H.; Jothibasu, R.
Eur. J. Inorg. Chem. 2009, 2009, 1926. (b) Jin, Z.; Gu, X.-P.; Qiu, L.-L.;
Wu, G.-P.; Song, H.-B.; Fang, J.-X. J. Organomet. Chem. 2011, 696,
859. (c) Iglesias, M. J.; Prieto, A.; Nicasio, M. C. Org. Lett. 2012, 14,
4318.
(7) For selected examples, see: (a) Shi, S.; Zhang, Y. J. Org. Chem.
2007, 72, 5927. (b) Zhang, L.; Wu, J. J. Am. Chem. Soc. 2008, 130,
12250. (c) Raders, S. M.; Kingston, J. V.; Verkade, J. G. J. Org. Chem.
2010, 75, 1744. (d) Lee, D.-H.; Jung, J.-Y.; Jin, M.-J. Chem. Commun.
for all new compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
C
Org. Lett. XXXX, XXX, XXX−XXX