10.1002/cssc.201801382
ChemSusChem
FULL PAPER
[6]
[7]
E. P. Gillis, M. D. Burke, Aldrichimica Acta 2009, 43, 17–27.
16148; i) M. J. Rodríguez-Álvarez, J. García-Álvarez, M. Uzelac, M.
Fairley, C. T. O’Hara, E. Hevia, Chem. Eur. J. 2018, 24, 1720–1725; j)
J. García-Álvarez, E. Hevia, V. Capriati, Chem. Eur. J. 2018, DOI:
10.1002/chem.201802873.
Interestingly, Lipshutz and co-workers have recently succeeded in
enabling MIDA boronates to participate efficiently in SM couplings with
(hetero)aryl halides at room temperature by developing a new, green
nanoreactor-based technology composed of an engineered surfactant
in water; see: N. A. Isley, F. Gallou, B. H. Lipshutz, J. Am. Chem. Soc.
2013, 135, 17707–17710.
[12] a) G. Imperato, S. Höger, D. Lenoir, B. König, Green Chem. 2006, 8,
1051–1055; b) X. Marset, A. Khoshnood, L. Sotorríos, E. Gómez-
Bengoa, D. A. Alonso, D. J. Ramón, ChemCatChem 2017, 9, 1269–
1275.
[8]
a) S. Darses, J.-P. Genet, Chem. Rev. 2008, 108, 288–325; b) G. A.
Molander, B. Canturk, L. E. Kennedy, J. Org. Chem. 2009, 74, 973–
980; c) G. A. Molander, B. Canturk, Angew. Chem. 2009, 121, 9404–
9425; Angew. Chem. Int. Ed. 2009, 48, 9240–9261; d) G. A. Molander,
J. Org. Chem. 2015, 80, 7837–7848; e) G. A. Molander, B. Biolatto, J.
Org. Chem. 2003, 68, 4302–4314; f) G. A. Molander, B. Biolatto, Org.
Lett. 2002, 4, 1867–1870; g) G. A. Molander, D. E. Petrillo, N. R.
Landzberg, J. C. Rohanna, B. Biolatto, Synlett 2005, 1763–1766; h) A.
Salomone, M. Petrera, D. I. Coppi, F. M. Perna, S. Florio, V. Capriati,
Synlett 2011, 12, 1761–1765; i) G. A. Molander, L. A. Felix, J. Org.
Chem. 2005, 70, 3950–3956; j) G. A. Molander, M. R. Rivero, Org. Lett.
2002, 4, 107–109; k) G. A. Molander, B. W. Katona, F. Machrouhi, J.
Org. Chem. 2002, 67, 8416–8423.
[13] a) E. Massolo, S. Palmieri, M. Benaglia, V. Capriati, F. M. Perna, Green
Chem. 2016, 18, 792–797; b) D. Brenna, E. Massolo, A. Puglisi, S.
Rossi, G. Celentano, M. Benaglia, V. Capriati, Beilstein J. Org. Chem.
2016, 12, 2620v2626.
[14] a) P. Vitale, V. Abbinante, F. M. Perna, A. Salomone, C. Cardellichio,
V. Capriati, Adv. Synth. Catal. 2017, 359, 1049–1057; b) P. Vitale, F.
M. Perna, G. Agrimi, I. Pisano, F. Mirizzi, R. V. Capobianco, V. Capriati,
Catalysts 2018, 8, 55–67; c) L. Cicco, N. Ríos-Lombardía, M. J.
Rodríguez-Álvarez, F. Morís, F. M. Perna, V. Capriati, J. García-
Álvarez, J. González-Sabín, Green Chem. 2018, 20, 3468–3475.
[15] a) C. L. Boldrini, N. Manfredi, F. M. Perna, V. Trifiletti, V. Capriati, A.
Abbotto, Energy Technol. 2017, 5, 345–353; b) F. Milano, L. Giotta, M.
R. Guascito, A. Agostiano, S. Sblendorio, L. Valli, F. M. Perna, L. Cicco,
M. Trotta, V. Capriati, ACS Sustainable Chem. Eng. 2017, 5, 7768–
7776.
[9]
For selected reviews on the use of DESs as reaction media in organic
synthesis, see: a) C. Ruß, B. König, Green Chem. 2012, 14, 2969–
2982; b) Q. Zhang, K. de Oliveira Vigier, S. Royer, F. Jérôme, Chem.
Soc. Rev. 2012, 41, 7108–7146; c) P. Liu, J.-W. Hao, L.-P. Mo, Z.-H.
Zhang, RSC Adv. 2015, 5, 48675–48704; d) D. A. Alonso, A. Baeza, R.
Chinchilla, G. Guillena, I. M. Pastor, D. J. Ramón, Eur. J. Org. Chem.
2016, 612–632; e) N. Guajardo, C. R. Müller, R. Schrebler, C. Carlesi,
P. Domínguez de María, ChemCatChem 2016, 8, 1020–1027.
[16] a) M. Funahashi, F. Zhang, N. Tamaoki, Adv. Mater. 2007, 19, 353–
358; b) N. Arai, T. Miyaoku, S. Teruya, A. Mori, Tetrahedron Lett. 2008,
49, 1000–1003; c) A. Mishra, C.Q. Ma, P. Bäuerle, Chem. Rev. 2009,
109, 1141–1276.
[17] R. M. Mohareb, A. E. M. Abdallah, M. A. Abdelaziz, Med. Chem. Res.
2014, 23, 564–579.
[10] a) G. Imperato, S. Höger, D. Leinor, B. König, Green Chem. 2006, 8,
1051-1055; b) G. Imperato, R. Vasold and B. König, Adv. Synth. Catal.
2006, 348, 2243–2247; c) F. Illgen, B. König, Green Chem. 2009, 11,
848–854; d) F. Jérôme, M. Ferreira, H. Bricout, S. Menuel, E. Monflier,
S. Tilloy, Green Chem. 2014, 16, 3876–3880; e) J. Lu, X.-T. Li, E.-Q.
Ma, L.-P. Mo, Z.-H. Zhang, ChemCatChem, 2014, 6, 2854–2859; f) C.
Vidal, F. J. Suárez and J. García-Álvarez, Catal. Commun. 2014, 44,
76–79; g) M. J. Rodríguez-Álvarez, C. Vidal, J. Díez, J. García-Álvarez,
Chem. Commun. 2014, 50, 12927–12929; h) C. Vidal, L. Merz, J.
García-Álvarez, Green Chem. 2015, 17, 3870–3878; i) M. Ferreira, F.
Jérôme, H. Bricout, S. Menuel, D. Landy, S. Fourmentin, S. Tilloy, E.
Monflier, Catal. Commun. 2015, 63, 62–65; j) N. Guajardo, C. Carlesi,
A. Aracena, ChemCatChem 2015, 7, 2451–2454; k) X. Marset, J. M.
Pérez, D. J. Ramón, Green Chem. 2016, 18, 826–833; l) R. Mancuso,
A. Maner, L. Cicco, F. M. Perna, V. Capriati, B. Gabriele, Tetrahedron
2016, 72, 4239–4244; m) M. Iwanow, J. Finkelmeyer, A. Söldner, M.
Kaiser, T. Gärtner, V. Sieber, B. König, Chem. Eur. J. 2017, 23, 12467–
12470; n) X. Marset, G. Guillena, D. J. Ramón, Chem. Eur. J. 2017, 23,
10522–10526; o) M. J. Rodríguez-Álvarez, C. Vidal, S. Schumacher, J.
Borge, J. García-Álvarez, Chem. Eur. J. 2017, 23, 3425–3431; p) F.
Messa, S. Perrone, M. Capua, F. Tolomeo, L. Troisi, V. Capriati, A.
Salomone, Chem. Commun. 2018, 54, 8100–8103.
[18] G. Hosie, H. Bird, J. Rheumatol. Inflamm. 1999, 14, 21–28.
[19] a) R. N. Brogden, R. C. Heel, G. E. Pakes, T. M. Speight, G. S. Avery,
Drugs 1980, 19, 84–106; b) J. N. Parker, P. M. Parker, Diflunisal: A
Medical Dictionary, Bibliography, and Annotated Research Guide to
Internet References (Eds.: ICON Group International, Inc)., 2004.
[20] A. J. J. Lennox, G. C. Lloyd-Jones, J. Am. Chem. Soc. 2012, 134,
7431–7441.
[21] M. Butters, J. N. Harvey, J. Jover, A. J. J. Lennox, G. C. Lloyd-Jones,
P. M. Murray, Angew. Chem. 2010, 122, 5282–5286; Angew. Chem.
Int. Ed. 2010, 49, 5156–5150.
[22] For selected examples, see: a) R. K. Arafa, M. A. Ismail, M. Munde, W.
D. Wison, T. Wenzler, R. Brun, D. W. Boykin, Eur. J. Med. Chem. 2008,
43, 2901–2908; b) D. Oehlrich, J.-C. Didier, D. J.-C. Berthelot, H. J. M.
Gijsen, J. Med. Chem. 2011, 54, 669–698; c) D. A. Patrick, M. A.
Ismail, R. K. Arafa, T. Wensler, X. Zhu, T. Pandharkar, S. K. Jones, K.
A. Werbovetz, R. Brun, D. W. Boykin, R. R. Tidwell, J. Med. Chem.
2013, 56, 5473–5494; d) L. Andernach, L. P. Sandjo, J. C. Liermann, R.
Schlämann, C. Richter, J.-P. Ferner, H. Schwalbe, A. Schüffler, E.
Trines, T. Opatz, J. Nat. Prod. 2016, 79, 2718–2725.
[23] a) W. Sharmoukh, K. C. Ko, S. Y. Park, J. H. Ko, J. M. Lee, C. Noh, Y.
J. L Lee and S. U. Son, Org. Lett. 2008, 10, 5365–5368; b) Y.
Umemoto, Y. Ie, A. Saeki, S. Seki, S. Tagawa, Y. Aso, Org. Lett. 2008,
10, 1095–1098; c) H. Sasabe, Y. Seino, M. Kimura, J. Kido, Chem.
Mater. 2012, 24, 1404–1406; d) H. A. Yemam, A. Mahl, J. S. Tinkham,
J. T. Koubek, U. Greife, A. Sellinger, Chem. Eur. J. 2017, 23, 8921–
8931.
[11] a) C. Vidal, J. García-Álvarez, A. Hernán-Gómez, A. R. Kennedy, E.
Hevia, Angew. Chem. 2014, 126, 6079–6083; Angew. Chem. Int. Ed.
2014, 53, 5969–5973; b) V. Mallardo, R. Rizzi, F. C. Sassone, R.
Mansueto, F. M. Perna, A. Salomone, V. Capriati, Chem. Commun.
2014, 50, 8655–8658; c) F. C. Sassone, F. M. Perna, A. Salomone, S.
Florio, V. Capriati, Chem. Commun. 2015, 51, 9459–9462; d) J. García-
Álvarez, E. Hevia, V. Capriati, Eur. J. Org. Chem. 2015, 6779–6799; e)
L. Cicco, S. Sblendorio, R. Mansueto, F. M. Perna, A. Salomone, S.
Florio, V. Capriati, Chem. Sci. 2016, 7, 1192–1199; f) G. Dilauro, M.
Dell'Aera, P. Vitale, V. Capriati, F. M. Perna, Angew. Chem. 2017, 129,
10334–10337; Angew. Chem. Int. Ed. 2017, 56, 10200–10203; g) L.
Cicco, M. J. Rodríguez-Álvarez, F. M. Perna, J. García-Álvarez, V.
Capriati, Green Chem. 2017, 19, 3069–3077; h) C. Vidal, J. García-
Álvarez, A. Hernán-Gómez, A. R. Kennedy, E. Hevia, Angew. Chem.
2016, 128, 16379–16382; Angew. Chem. Int. Ed. 2016, 55, 16145–
[24] A. Falcicchio, S. O. Nilsson Lill, F. M. Perna, A. Salomone, D. I. Coppi,
C. Cuocci, D. Stalke, V. Capriati, Dalton Trans. 2015, 44, 19447–
19450.
[25] Of note, Lipshutz and co-workers have recently demonstrated that (a)
the use of ppm levels of Pd(OAc)2 work synergistically with copper
catalysis in promoting SM couplings chemoselectively on aryl iodides
(S. Handa, J. D. Smith, M. Hageman, M. Gonzalez, B. H. Lipshutz,
ACS Catalysis 2016, 6, 8179–9183), and that (b) nanoparticles formed
from inexpensive FeCl3 in the presence of ppm levels of Pd have also
proven to be effective in mediating SM couplings in water starting from
This article is protected by copyright. All rights reserved.