Supported Palladium Catalyst on Nanoparticles
[3]
Catal. 2007, 349, 1150–1158; c) S. Schweizer, J.-M. Becht, C.
Le Drian, Org. Lett. 2007, 9, 3777–3780; d) S. Schweizer, J.-
M. Becht, C. Le Drian, Tetrahedron 2010, 66, 765–772; e) C.
Diebold, J.-M. Becht, J. Lu, P. H. Toy, C. Le Drian, Eur. J. Org.
Chem. 2012, 893–896.
a) P. Xi, K. Cheng, X. Sun, Z. Zeng, S. Sun, Chem. Commun.
2012, 48, 2952–2954; b) J. Shin, R. M. Anisur, M. K. Ko, G. H.
Im, J. H. Lee, I. S. Lee, Angew. Chem. Int. Ed. 2009, 48, 321–
324; Angew. Chem. 2009, 121, 327–330; c) K. E. Scarberry,
E. B. Dickerson, J. F. McDonald, Z. J. Zhang, J. Am. Chem.
Soc. 2008, 130, 10258–10262; d) A. K. Gupta, M. Gupta, Bio-
materials 2005, 26, 3995–4021; e) J. Wang, X. Wang, Y. Song,
C. Zhu, J. Wang, K. Wanga, Z. Guo, Chem. Commun. 2013,
49, 2786–2788; f) A. Schaetz, O. Reiser, W. J. Stark, Chem. Eur.
J. 2010, 16, 8950–8967.
a) J. Narasimha Moorthy, P. Venkatakrishnan, D. F. Huang,
T. J. Chow, Chem. Commun. 2008, 2146–2148; b) H.-T. Shih,
C.-H. Lin, H.-H. Shih, C.-H. Cheng, Adv. Mater. 2002, 14,
1409–1412.
M. Benstead, G. A. Rosser, A. Beeby, G. H. Mehl, R. W. Boyle,
New J. Chem. 2011, 35, 1410–1417.
[4]
[15]
[5]
[6]
L. Pu, Chem. Rev. 1998, 98, 2405–2494.
a) N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979,
20, 3437–3440; b) N. Miyaura, A. Suzuki, Chem. Rev. 1995,
95, 2457–2483; c) S. Kotha, K. Lahiri, D. Kashinath, Tetrahe-
dron 2002, 58, 9633–9695; d) J. Hassan, M. Sévignon, C. Gozzi,
E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359–1469; e)
A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 2002, 41, 4176–
4211; Angew. Chem. 2002, 114, 4350–4386.
[7]
Aryl halides can also be replaced by other aromatic com-
pounds, see: a) for Suzuki–Miyaura reactions with aryl tri-
flates, see: A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc.
2000, 122, 4020–4028; b) for Suzuki–Miyaura reactions with
aryl tosylates, see: H. N. Nguyen, X. Huang, S. L. Buchwald,
J. Am. Chem. Soc. 2003, 125, 11818–11819; c) for Suzuki–Mi-
yaura reactions from aryl mesylates, see: K. H. Chung, C. M.
So, S. M. Wong, C. H. Luk, Z. Zhou, C. P. Lau, F. Y. Kwong,
Chem. Commun. 2012, 48, 1967–1969; d) for Suzuki–Miyaura
reactions with aryldiazonium salts, see: H. Bonin, E. Fouquet,
F.-X. Felpin, Adv. Synth. Catal. 2011, 353, 3063–3084.
Arylboronic acids can also be replaced by other aromatic com-
pounds; a) for Suzuki–Miyaura reactions with aryl trifluoro-
boranes, see: G. A. Molander, B. Canturk, Angew. Chem. Int.
Ed. 2009, 48, 9240–9261; Angew. Chem. 2009, 121, 9404–9425;
b) for for Suzuki–Miyaura reactions from boronic esters, see:
W. K. Chow, C. M. So, C. P. Lau, F. Y. Kwong, Chem. Eur. J.
2011, 17, 6913–6917; c) for Suzuki–Miyaura type reactions
with arylcarboxylic acids, see: L. J. Goossen, N. Rodriguez, K.
Goossen, Angew. Chem. Int. Ed. 2008, 47, 3100–3120; Angew.
Chem. 2008, 120, 3144–3164; d) for Suzuki–Miyaura type reac-
tions with unfunctionalized arenes, see: D. Alberico, M. E.
Scott, M. Lautens, Chem. Rev. 2007, 107, 174–238.
Other powerful transition-metal-catalyzed synthetic methods
for the preparation of biaryls have been reported, see: a) for
Cu-catalyzed cross-coupling reactions, see: P. E. Fanta, Synthe-
sis 1974, 9–21; b) for Ni-catalyzed cross-coupling reactions, see:
C.-C. Lee, W.-C. Ke, K.-T. Chan, C.-L. Lai, C.-H. Hu, H.-
M. Lee, Chem. Eur. J. 2007, 13, 582–591, and references cited
therein.
A. Alimardanov, L. Schmieder-van de Vondervoort, A. H. M.
de Vries, J. G. de Vries, Adv. Synth. Catal. 2004, 346, 1812–
1817.
[16]
[17]
S. Shylesh, V. Schnemann, W. R. Thiel, Angew. Chem. Int. Ed.
2010, 49, 3428–3459; Angew. Chem. 2010, 122, 3504–3537.
a) V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara,
J.-M. Basset, Chem. Rev. 2011, 111, 3036–3075; b) R. B. Na-
sir Baig, R. S. Varma, Chem. Commun. 2013, 49, 752–770.
[18]
a) For epoxidation reactions, see: S. Shylesh, J. Schweizer, S.
Demeshko, V. Schünemann, S. Ernst, W. R. Thiel, Adv. Synth.
Catal. 2009, 351, 1789–1795; b) for hydrogenation reactions,
see: V. Polshettiwar, B. Baruwati, R. S. Varma, Green Chem.
2009, 11, 127–131; c) for the reduction of nitroarenes and carb-
onyl compounds, see: M. B. Gawande, A. K. Rathi, P. S.
Branco, I. D. Nogueira, A. Velhinho, J. J. Shrikhande, U. U.
Indulkar, R. V. Jayaram, C. A. A. Ghumman, N. Bundaleski,
O. M. N. D. Teodoro, Chem. Eur. J. 2012, 18, 12628–12632; d)
for aldol reactions see: Z. Yacob, A. Nan, J. Liebscher, Adv.
Synth. Catal. 2012, 354, 3259–3264; e) for click reactions, see:
R. Hudson, C.-J. Li, A. Moores, Green Chem. 2012, 14, 622–
624; f) for cycloaddition reactions, see: X. Zheng, S. Luo, L.
Zhang, J.-P. Cheng, Green Chem. 2009, 11, 455–458; g) for the
enantioselective direct addition of terminal alkynes to imines,
see: T. Zeng, L. Yang, R. Hudson, G. Song, A. R. Moores, C.-
J. Li, Org. Lett. 2011, 13, 442–445.
Magnetic NPs find other applications in organic Synthesis see:
a) for peptide Synthesis see: C. Stutz, I. Bilecka, A. F. Thüne-
mann, M. Niederberger, H. G. Börner, Chem. Commun. 2012,
48, 7176–7178; b) for phase-transfer catalysis, see: M. Kawa-
mura, K. Sato, Chem. Commun. 2006, 4718–4719; c) for sup-
porting amines, see: C. Ó Dálaigh, S. A. Corr, Y. Gun’ko, S. J.
Connon, Angew. Chem. Int. Ed. 2007, 46, 4329–4332; Angew.
Chem. 2007, 119, 4407–4410.
a) B. Baruwati, V. Polshettiwar, R. S. Varma, Tetrahedron Lett.
2009, 50, 1215–1218; b) Z. Gao, Y. Feng, F. Cui, Z. Hua, J.
Zhou, Y. Zhu, J. Shi, J. Mol. Catal. A 2011, 336, 51–57; c) B.
Baruwati, D. Guin, S. V. Manorama, Org. Lett. 2007, 9, 5377–
5380; d) D. Guin, B. Baruwati, S. V. Manorama, Org. Lett.
2007, 9, 1419–1421.
For catalysts with uncoated Co NPs as supports, see: F. Mich-
alek, A. Lagunas, C. Jimeno, M. A. Pericas, J. Mater. Chem.
2008, 18, 4692–4697.
a) R. Cano, D. J. Ramón, M. Yus, Tetrahedron 2011, 67, 5432–
5436; b) R. Cano, M. Yus, D. J. Ramón, Tetrahedron 2012, 68,
1393–1400; c) B. Sreedhar, A. S. Kumar, D. Yada, Synlett 2011,
8, 1081–1084.
[8]
[9]
[19]
[20]
[10]
[11]
[12]
M. Lamblin, L. Nassar-Hardy, J.-C. Hierso, E. Fouquet, F.-X.
Felpin, Adv. Synth. Catal. 2010, 352, 33–79.
a) N. E. Leadbeater, M. Marco, Chem. Rev. 2002, 102, 3217–
3274; b) C. A. McNamara, M. J. Dixon, M. Bradley, Chem.
Rev. 2002, 102, 3275–3300; c) T. J. Dickerson, N. N. Reed,
K. D. Janda, Chem. Rev. 2002, 102, 3325–3344; d) D. E. Berg-
breiter, Chem. Rev. 2002, 102, 3345–3384; e) J. Lu, P. H. Toy,
Chem. Rev. 2009, 109, 815–838.
a) D. E. De Vos, M. Dams, B. F. Sels, P. A. Jacobs, Chem. Rev.
2002, 102, 3615–3640; b) B. M. Choudary, S. Madhi, N. S.
Chowdari, M. L. Kantam, B. Sreedhar, J. Am. Chem. Soc.
2002, 124, 14127–14136; c) K. Mori, K. Yamaguchi, T. Hara,
T. Mizukagi, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 2002,
124, 11572–11573; d) H. Bulut, L. Artok, S. Yilmaz, Tetrahe-
dron Lett. 2003, 44, 289–291; e) K.-i. Shimizu, T. Kan-no, T.
Kodama, H. Hagiwara, Y. Kitayama, Tetrahedron Lett. 2002,
43, 5653–5655; f) C. Baleizão, A. Corma, H. García, A. Leyva,
Chem. Commun. 2003, 606–607; g) R. Sayah, K. Glegola, E.
Framery, V. Dufaud, Adv. Synth. Catal. 2007, 349, 373–381;
h) M. Trilla, R. Pleixats, M. Wong Chi Man, C. Bied, J. J. E.
Moreau, Adv. Synth. Catal. 2008, 350, 577–590.
[21]
[22]
[13]
[23]
a) P. D. Stevens, G. Li, J. Fan, M. Yen, Y. Gao, Chem. Commun.
2005, 4435–4437; b) N. J. S. Costa, P. K. Kiyohara, A. L. Mon-
teiro, Y. Coppel, K. Philippot, L. M. Rossi, J. Catal. 2010, 276,
382–389; c) M.-J. Jin, D.-H. Lee, Angew. Chem. Int. Ed. 2010,
49, 1119–1122; Angew. Chem. 2010, 122, 1137–1140; d) X.
Zhang, P. Li, Y. Ji, L. Zhang, L. Wang, Synthesis 2011, 18,
2975–2983; e) P. Li, L. Wang, L. Zhang, G.-W. Wang, Adv.
Synth. Catal. 2012, 354, 1307–1318; f) Q. Du, W. Zhang, H.
Ma, J. Zheng, B. Zhou, Y. Li, Tetrahedron 2012, 68, 3577–3584;
g) N. T. S. Phan, H. V. Le, J. Mol. Catal. A 2011, 334, 130–138;
h) F. Zhang, J. Jin, X. Zhong, S. Li, J. Niu, R. Li, J. Ma, Green
[14]
a) I. Fenger, C. Le Drian, Tetrahedron Lett. 1998, 39, 4287–
4290; b) S. Schweizer, J.-M. Becht, C. Le Drian, Adv. Synth.
Eur. J. Org. Chem. 2014, 7699–7706
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7705