4
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
obtained as the major product with concomitant formation of
6-aminoindole as the by-product (Table 2, entry 11).
57
This work was financially supported by ENEOS
58 Hydrogen Trust Fund and JSPS KAKENHI Grant No.
59 15H05797 in Precisely Designed Catalysts with Customized
60 Scaffolding.
61
62
63 http://dx.doi.org/10.1246/cl.#####.
64
Finally, the reaction pathway for the Pd/LDH-
catalyzed acceptorless dehydrogenative aromatization of
piperidines was investigated. The reaction profile for the
Pd/LDH-catalyzed reaction of 1e exhibited that an imine
2,3,4,5-tetrahydro-6-phenylpyridine (3e) was detected
during the reaction albeit in only small amounts (Figure S5),
suggesting that the reaction proceeds through the imine
intermediate. In our previous reports of palladium-
nanoparticles-catalyzed dehydrogenative aromatization of
cyclohexanones or cyclohexylamines, the reactions were
composed of the rate-limiting substrate dehydrogenation
Supporting
Information
is
available
on
6
5 References and Notes
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
66
1
2
G. E. Dobereiner, R. H. Crabtree, Chem. Rev. 2010, 110, 681.
D. E. Resasco, in Encyclopedia of catalysis, ed. by I. T. Horváth,
Wiley, New York, 2003, vol. 3.
a) J. Choi, A. H. R. MacArthur, M. Brookhart, A. S. Goldman,
Chem. Rev. 2011, 111, 1761. b) C. M. Jensen, Chem. Commun.
1999, 2443.
C. Gunanathan. D. Milstein, Science, 2013, 341, 1229712.
a) J. Zhang, E. Balaraman, G. Leitus, D. Milstein,
organometallics, 2011, 30, 5716. b) K. Fujita, T. Yoshida, Y.
Imori, R. Yamaguchi, Org. Lett. 2011, 13, 2278.
6
6
6
7
7
8
9
0
3
7
followed by the fast disproportionation. We considered that
the proposed Pd/LDH-catalyzed aromatization of cyclic
amines also proceeds through such a dehydrogenation-
disproportionation sequence. Thus, we prepared 3e
according to the reported procedure, and the reaction of 3e
was carried out under the standard conditions. As shown in
Figure S6, it was confirmed that the corresponding pyridine
2e was formed by the imine disproportionation. However,
the production rate of 2e starting from 3e was significantly
smaller than that starting from 1e (Figure S6 vs Figure S5).
In a separate experiment, we confirmed that the presence of
an excess of an imine relative to the catalyst strongly
inhibited the amine dehydrogenation; the addition of 3e (1.3
equivalents to 1a) in the reaction of 1a totally inhibited the
dehydrogenation while the disproportionation of 3e
preferentially occurred (Table S3). We interpret these
experimental results as follows. Firstly, acceptorless
dehydrogenation of an amine proceeds to afford an imine
intermediate (Scheme 2a). Then, the corresponding pyridine
is immediately formed through disproportionation before
the imine accumulates (Scheme 2b-1). However, since the
71
72
4
5
7
7
7
7
3
4
5
6
6
7
R. H. Crabtree, Chem. Rev. 2017, 117, 9228.
77
78
a) X. Jin, K. Taniguchi, K. Yamaguchi, K. Nozaki, N. Mizuno,
Chem. Commun. 2017, 53, 5267. b) X. Jin, Y. Koizumi, K.
Yamaguchi, K. Nozaki, N. Mizuno, J. Am. Chem. Soc. 2017, 139,
13821. c) Y. Koizumi, K. Taniguchi, X. Jin, K. Yamaguchi, K.
Nozaki, N. Mizuno, Chem. Commun. 2017, 53, 10827. d) K.
Taniguchi, X. Jin, K. Yamaguchi, K. Nozaki, N. Mizuno, Chem.
Sci. 2017, 8, 2131.
M. Kojima, M. Kanai, Angew. Chem., Int Ed. 2016, 55, 12224.
S. Hati, U. Holzgrabe, S. Sen, Beilstein J. Org. Chem. 2017, 13,
1670, and references cited therein.
a) S. Chakraborty, W. W. Brennessel, W. D. Jones, J. Am. Chem.
Soc. 2014, 136, 8564. b) J. Wu, D. Talwar, S. Johnston, M. Yan,
J. Xiao, Angew. Chem., Int. Ed. 2013, 52, 6983. c) Y. Wu, H. Yi,
A. Lei, ACS Catal. 2018, 8, 1192. d) K.-H. He, F.-F. Tan, C.-Z.
Zhou, G.-J. Zhou, X.-L. Yang, Y. Li, Angew. Chem., Int. Ed.
2017, 56, 3080. e) C. Deraedt, R. Ye, W. T. Ralston, F. D. Toste,
G. A. Somorjai, J. Am. Chem. Soc. 2017, 139, 18084. f) Y.
Mikami, K. Ebata, T. Mitsudome, T. Mizugaki, K. Jitsukawa, K.
Kaneda, Heterocycles, 2011, 82, 1371. g) S. K. Moromi, S. M. A.
H. Siddiki, K. Kon, T. Toyao, K. Shimizu, Catal. Today, 2017,
281, 507. h) T. Hara, K. Mori, T. Mizugaki, K. Ebitani, K.
Kaneda, Tetrahedron Lett. 2003, 44, 6207. i) K. Fujita, T. Wada,
T. Shiraishi, Angew. Chem., Int. Ed. 2017, 56, 10886. j) K. Fujita,
Y. Tanaka, M. Kobayashi, R. Yamaguchi, J. Am. Chem. Soc.
2014, 136, 4829. k) D. Forberg, T. Schwob, M. Zaheer, M.
Friedrich, N. Miyajima, R. Kempe, Nat. Commun. 2016, 7,
13201.
7
8
8
8
9
0
1
2
83
84
8
9
8
8
8
8
5
6
7
8
10
89
90
9
9
9
9
1
2
3
4
possibility of
a
direct dehydrogenation pathway
95
96
(Scheme 2b-2) cannot be completely denied, we consider
that further detailed investigations are necessary.
9
9
9
7
8
9
1
00
101
102
1
1
1
1
03
04 11
05
W. Yao, Y. Zhang, X. Jia, Z. Huang, Angew. Chem., Int. Ed.
2014, 53, 1390.
06 12
During the preparation of this manuscript, acceptorless amine
dehydrogenation and transamination using pallaium-doped
hydrotalcites have been reported: D. Ainembabazi, N. An, J. C.
Manayil, K. Wilson, A. F. Lee, A. M. Voutchkova-Kostal, ACS
Catal. 2019, 9, 1055.
107
108
1
1
1
1
1
09
10
11 13
12
In our previously reported palladium-nanoparticles-catalyzed
7
acceptorless dehydrogenative aromatization, we confirmed that
13
the addition of an aromatic compound strongly inhibited the
reactions (unpublished findings).
114
1
1
1
1
1
15 14
a) F. Alhumaidan, D. Cresswell, A. Garforth, Energy Fuels, 2011,
25, 4217. b) C. Zhang, X. Liang, S. Liu, Int. J. Hydrogen Energy,
2011, 36, 8902. c) Y. Wang, N. Shah, G. P. Huffman, Energy
Fuels, 2004, 18, 1429. d) N. Kariya, A. Fukuoka, M. Ichikawa,
Appl. Catal. A, 2002, 233, 91.
16
17
18
19
Scheme 2. Plausible reaction path for the Pd/LDH-catalyzed
acceptorless dehydrogenative aromatization of piperidines.
120 15 R. A. Sheldon, M. Wallau, I. W. C. E. Arends, U. Schuchardt,
21
22
1
1
Acc. Chem. Res. 1998, 31, 485.
1
23