4412
K. Nagaiah et al. / Tetrahedron Letters 47 (2006) 4409–4413
1995, 233–234; (c) Kobayashi, S.; Ishitani, H.; Nagayama,
S.; Hachiya, I. Synlett 1995, 1195–1202; (d) Nagarajan, R.;
Chitra, S.; Perumal, P. T. Tetrahedron 2001, 57, 3419–
3423.
for both electron-rich as well as electron deficient aryl
imines. Also, this method offers several advantages, such
as higher yields, shorter reaction times, high trans-selec-
tivity, cleaner reaction profiles and simple experimental
and work-up procedures. All the products were charac-
8. (a) Anastas, P.; Williamson, T. Green Chemistry. In
Frontiers in Benign Chemical Synthesis and Procedures;
Oxford Science Publications: Oxford, 1998; (b) Ritter, S.
K. Chem. Eng. News 2001, 27–34.
9. (a) Clark, J. H. Acc. Chem. Res. 2002, 35, 791; (b) Misono,
M.; Ono, I.; Koyano, G.; Aoshima, A. Pure Appl. Chem.
2000, 72, 1305.
10. (a) Kozhevnikov, I. V. Chem. Rev. 1998, 98, 171; (b)
Mizuno, N.; Misono, M. Chem. Rev. 1998, 98, 199; (c)
Mizuno, N.; Misono, M. Chem. Rev. 1998, 98, 199.
11. Vazquez, P.; Pizzio, L.; Caceres, C.; Blanco, M.; Thomas,
H.; Alesso, E.; Finkielsztein, L.; Lantano, B.; Moltrasio,
G.; Aguirre, J. J. Mol. Cat. A 2000, 161, 223–232.
12. Romanelli, G.; Vazquez, P.; Pizzio, L.; Quaranta, N.;
Autino, J.; Blanco, M.; Caceres, C. Appl. Catal. A 2004,
261, 163–170.
1
terized by H NMR, 13C NMR, IR and mass spectro-
scopic data and also by comparison with authentic
samples.17
In conclusion, we have described a simple, mild and effi-
cient protocol for the synthesis of trans-fused furano-
and pyranoquinolines via a three-component one-pot
aza-Diels–Alder reaction of aldehydes, amines and cyc-
lic enol ethers, using 1 mol % of commercially available
and cheap phosphomolybdic acid (PMA) as catalyst.
Acknowledgements
13. Pizzio, L. R.; Vazquez, P. G.; Caceres, C. V.; Blanco, M.
N.; Alesso, E. N.; Torviso, M. R.; Lantano, B.; Moltra-
sio, G. Y.; Aguirre, J. M. Appl. Catal. A 2005, 287, 1–8.
14. Kishore Kumar, G. D.; Baskaran, S. Chem. Commun.
2004, 1026–1027.
D.S. and R.S.R. thank CSIR, New Delhi, for the award
of fellowships.
15. Kishore Kumar, G. D.; Baskaran, S. Synlett 2004, 1719–
1722.
References and notes
16. Smitha, G.; Bruhaspathy, M.; Williamson, J. S. Synlett
2005, 839–841.
17. Experimental procedure: A mixture of aryl amine 1
1. (a) Faber, K.; Stueckler, H.; Kappe, T. J. Hetercycl.
Chem. 1984, 21, 1177–1178; (b) Johnson, J. V.; Rauck-
man, S.; Baccanari, P. D.; Roth, B. J. Med. Chem. 1989,
32, 1942–1949; (c) Yamada, N.; Kadowaki, S.; Takahashi,
K.; Umezu, K. Biochem. Pharmacol. 1992, 44, 1211; (d)
McLaughlin, M. J.; Hsung, R. P. J. Org. Chem. 2001, 66,
1049–1053; (e) Michael, J. P. Nat. Prod. Rep. 2005, 22,
627–646.
(1.0 mmol), aromatic aldehyde
2
(1.0 mmol), 2,3-
dihydrofuran or 3,4-dihydro-2H-pyran (2.0 mmol) and
phosphomolybdic acid (PMA) (18 mg, 1 mol %), under
solvent-free conditions, was stirred at ambient tempera-
ture for the appropriate time (Table 2). The progress of the
reaction was monitored by TLC. After completion, the
reaction mixture was extracted with diethyl ether
(3 · 10 mL). The combined organic layers were dried over
anhydrous Na2SO4, concentrated in vacuo and purified by
column chromatography over silica gel to yield the
corresponding furano- and pyranoquinolines. All prod-
2. Ramesh, M.; Mohan, P. S.; Shanmugam, P. Tetrahedron
1984, 40, 4041.
3. (a) Boger, D. L.; Weinreb, S. M. J. Hetero Diels–Alder
Methodology in Organic Synthesis; Academic Press: San
Diego, 1987; Chapters 2 and 9; (b) Weinreb, S. M. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 401–449.
4. (a) Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656–670; (b)
Cabral, J.; Laszlo, P. Tetrahedron Lett. 1989, 30, 7237–
7238; (c) Babu, G.; Perumal, P. T. Tetrahedron Lett. 1998,
39, 3225–3228; (d) Baudelle, R.; Melnyk, P.; Deprez, B.;
Tartar, A. Tetrahedron 1998, 54, 4125–4140; (e) Crousse,
B.; Begue, J. P.; Delpon, D. B. Tetrahedron Lett. 1998, 39,
5765–5768; (f) Ma, Y.; Qian, C.; Xie, M.; Sun, J. J. Org.
Chem. 1999, 64, 6462–6467.
5. (a) Babu, G.; Nagarajan, R.; Perumal, P. T. Synthesis
2000, 661–666; (b) Yadav, J. S.; Reddy, B. V. S.; Madhuri,
Ch.; Sabitha, G. Synthesis 2001, 1065–1068; (c) Yadav, J.
S.; Reddy, B. V. S.; Srinivas, R.; Madhuri, Ch.; Rama-
lingam, T. Synlett 2001, 240; (d) Buonora, P.; Olsen, J. C.;
Oh, T. Tetrahedron 2001, 57, 6099–6138.
6. (a) Spanedda, M. V.; Hoang, V. D.; Crousse, B.; Bonnet-
Delpon, D.; Begue, J. P. Tetrahedron Lett. 2003, 44, 217–
219; (b) Yadav, J. S.; Reddy, B. V. S.; Reddy, J. S. S.; Rao,
R. S. Tetrahedron 2003, 59, 1599–1604; (c) Yadav, J. S.;
Reddy, B. V. S.; Sunitha, V.; Reddy, K. S. Adv. Synth.
Catal. 2003, 345, 1203–1206; (d) Ravindranath, N.;
Ramesh, C.; Ravinder Reddy, M.; Das, B. Chem. Lett.
2003, 32, 222–223; (e) Srinivas, K. V. N. S.; Das, B. Synlett
2004, 1715–1718, and references cited therein.
1
ucts were characterized by H NMR, 13C NMR, IR and
mass spectroscopic data and also by comparison with
authentic samples. The spectroscopic data of known
products were identical with the data reported in the
literature.3–6 Spectral data for selected products:
Compound 3a: trans-4-Phenyl-2,3,3a,4,5,9b-hexahydro-furo-
[3,2-c]quinoline:viscous oil, IR (KBr):mmax: 3329, 2952, 1610,
1055 cmÀ1; 1H NMR (200 MHz, CDCl3): d 1.72(m, 1H), 2.00
(m, 1H), 2.45 (m, 1H), 3.85 (m, 3H), 4.10 (m, 1H), 4.60 (d,
J = 5.2 Hz, 1H), 6.64 (d, J = 8.2 Hz, 1H), 6.80 (td, J = 7.9,
0.9 Hz, 1H,), 7.18 (td, J = 7.9, 0.9 Hz, 1H), 7.24–7.46(m, 6H).
13C NMR (50 MHz, CDCl3): d 145.5, 141.6, 131.0, 128.9,
128.6, 128.2, 128.0, 120.0, 118.0, 114.4, 76.0, 65.2, 57.4, 43.3,
28.6. EIMS (EI, 70 eV): m/z: 251 M+, 206.
Compound 4a: cis-4-Phenyl-2,3,3a,4,5,9b-hexahydro-furo-
[3,2-c]quinoline: white solid, mp 93–95 ꢁC; IR (KBr): mmax
:
3350, 2975, 2855, 1612, 1485, 1072 cmÀ1 1H NMR
,
(200 MHz, CDCl3): d 1.55 (m, 1H), 2.25 (m, 1H), 2.75 (m,
1H), 3.82 (m, 3H), 4.70 (d, J = 2.9 Hz, 1H), 5.25 (d,
J = 8.2 Hz, 1H), 6.60 (d, J = 8.2 Hz, 1H), 6.80 (d, J =
8.2 Hz, 1H), 7.05 (t, J = 8.2 Hz, 1H), 7.35–7.55 (m, 6H). 13
C
NMR (50 MHz, CDCl3): d 144.7, 142.3, 130.0, 128.7, 128.2,
127.5, 126.2, 122.5, 119.0, 114.8, 75.8, 66.6, 57.4, 45.7, 24.4.
EIMS (EI, 70 eV): m/z: 251 M+, 206, 174, 130, 91. Anal.
Calcd for C17H17NO (251.32): C, 81.24; H, 6.82; N, 5.57.
Found: C, 81.27; H, 6.85; N, 5.60.
Compound 5g: trans-5-Phenyl-3,4,4a,5,6,10b-hexahydro-2H-
pyrano[3,2-c]quinoline: Pale yellow oil; IR (KBr): mmax: 3325,
7. (a) Makioka, Y.; Shindo, T.; Taniguchi, Y.; Takaki, K.;
Fujwara, Y. Synthesis 1995, 801–804; (b) Kobayashi, S.;
Araki, M.; Ishitani, H.; Nagayama, S.; Hachiya, I. Synlett