C O MMU N I C A T I O N S
Table 3. Phosphine Catalyzed Arylation of Crotonaldehyde Using
(CS0927), the Alfred P. Sloan Foundation, the Camille and Henry
Dreyfus Foundation, Eli Lilly, and the UT-Austin Center for
Materials Research (CMC) for partial support of this research.
BiAr3Cl2 Reagentsa,b
Supporting Information Available: Spectral data for all new
compounds (1H NMR, 13C NMR, IR, HRMS) (PDF). This material is
References
(1) (a) Baik, T.-G.; Luiz, A.-L.; Wang, L.-C.; Krische, M. J. J. Am. Chem.
Soc. 2001, 123, 5112. (b) Wang, L.-C.; Jang, H.-Y.; Roh, Y.; Schultz, A.
J.; Wang, X.; Lynch, V.; Krische, M. J. J. Am. Chem. Soc. 2002, 124,
9448. (c) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. J. Am. Chem.
Soc. 2002, 124, 15156. (d) Huddleston, R. R.; Krische, M. J. Org. Lett.
2003, 5, 1143. (e) Huddleston, R. R.; Cauble, D. F.; Krische, M. J. J.
Org. Chem. 2003, 68, 11. (f) Marriner, G. A.; Garner, S. A.; Jang, H.-Y.;
Krische, M. J. J. Org. Chem. 2004, 69, 1380. (g) Koech, P. K.; Krische,
M. J. Org. Lett. 2004, 6, 691.
(2) (a) Cauble, D. F.; Gipson, J. D.; Krische, M. J. J. Am. Chem. Soc. 2003,
125, 1110. (b) Bocknack, B. M.; Wang, L.-C.; Krische, M. J. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, in press. (c) Agapiou, K.; Cauble, D. F.;
Krische, M. J. J. Am. Chem. Soc. 2004, 126, 14, 4528-4529.
a
See Supporting Information for a detailed experimental procedure.
b
Isolated yields after purification by silica gel chromatography.
(3) (a) Wang, L.-C.; Luiz, A.-L.; Agapiou, K.; Jang, H.-Y.; Krische, M. J. J.
Am. Chem. Soc. 2002, 124, 2402. (b) Agapiou, K.; Krische, M. J. Org.
Lett. 2003, 5, 1737. (c) Jellerichs, B. G.; Kong, J.-R.; Krische, M. J. J.
Am. Chem. Soc. 2003, 125, 7758.
products 1b-e and 2b-e, aryl transfer proceeds readily using para-
substituted triaryl bismuth(V) dichlorides. However, it was found
that strong π-donating substituents in the para-position diminish
the efficiency of aryl transfer. For example, transfer of para-
methoxy-substituted arenes occurs in greatly diminished yield. As
demonstrated by the formation of R-arylation products 1f-h and
2f-h, meta-substituted triaryl bismuth(V) dichlorides transfer
efficiently, even in the case methoxy-substituted systems. Finally,
the transfer of disubstituted arenes is illustrated by the formation
of R-arylation products 1i and 2i.
To further probe the scope of this transformation, alternative
pronucleophiles were examined. The collective experiments reveal
the pronucleophile must be substituted at the â-position, because
of competitive anionic polymerization. Additionally, it appears that
the pronucleophile must readily achieve an s-trans-conformation.
For example, whereas cyclic enones such as cyclohexenone and
cyclopentenone undergo arylation in good yield, corresponding
acyclic systems provide R-arylated products in greatly diminished
yield. Gratifyingly, it was found that â-substituted enals, such as
crotonaldehyde 3, participate in aryl transfer to provide the
R-arylated enals 3a-d in modest to good yields.
In summation, cyclic enones and â-substituted enals undergo
regiospecific R-arylation under the conditions of nucleophilic
catalysis using triarylbismuth(V) dichlorides. This approach comple-
ments related Pd-catalyzed methods for enolate arylation in several
respects. Specifically, the use of enones as latent enolates enables
regiospecific enolate generation, bromo-substituted arenes are
readily transferred, and finally, preservation of the enone moiety
in the product facilitates subsequent elaboration of the arylated
products. Future studies will focus on the development of related
reagents for aryl transfer under the conditions of nucleophilic
catalysis and the application of such methods toward the total
synthesis of therapeutically relevant target molecules.
(4) For a recent review of Pd-catalyzed enolate arylation, see: Culkin, D.
A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234.
(5) For metal-catalyzed arylation of unmodified carbonyl compounds, see:
(a) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 11108.
(b) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382.
(c) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, N. Angew. Chem., Int.
Ed. Engl. 1997, 36, 1740. (d) Ahmen, J.; Wolfe, J. P.; Troutman, M. V.;
Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 1918. (e)
Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 1473. (f)
Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J. Am. Chem. Soc.
2000, 122, 1360. (g) Moradi, W. A.; Buchwald, S. L. J. Am. Chem. Soc.
2001, 123, 7996. (h) Hamada, T.; Chieffi, A.; Ahman, J.; Buchwald, S.
L. J. Am. Chem. Soc. 2002, 124, 1261. (i) Jorgenson, M.; Lee, S.; Liu,
X.; Wolkowski, J. P.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 12557.
(6) In the Heck arylation of R,â-unsaturated carbonyl compounds, products
of R-arylation are observed as side products: Beletskaya, I. P.; Cheprakov,
A. V. Chem. ReV. 2000, 100, 3009.
(7) Decomposition of aryl diazonium salts in the presence of cinnamic acid
esters afford products of R-arylation in poor yield: Koelsch, C. F.;
Boekelheide, V. J. Am. Chem. Soc. 1944, 66, 412.
(8) For reviews on organobismuth reagents, see: (a) Freedman, L. D.; Doak,
G. O. Chem. ReV. 1982, 82, 15. (b) Barton, D. H. R.; Finet, J.-P. Pure
Appl. Chem. 1987, 59, 937. (c) Abramovitch, R. A.; Barton, D. H. R.;
Finet, J.-P.; Tetrahedron 1988, 44, 3039. (d) Finet, J.-P. Chem. ReV. 1989,
89, 1487.
(9) (a) David, S.; Thieffry, A. Tetrahedron Lett. 1981, 22, 2885. (b) David,
S.; Thieffry, A. Tetrahedron Lett. 1981, 22, 5063. (c) David, S.; Thieffry,
A. J. Org. Chem. 1983, 48, 441. (d) Barton, D. H. R.; Finet, J.-P.; Pichon,
C. J. Chem. Soc., Chem. Commun. 1986, 65. (e) Barton, D. H. R.; Finet,
J.-P.; Motherwell, W. B.; Pichon, C. J. Chem. Soc., Perkin Trans. 1987,
251.
(10) Barton, D. H. R.; Finet, J.-P.; Khamsi, J. Tetrahedron Lett. 1986, 27,
3615.
(11) (a) Barton, D. H. R.; Bhatnagar, N. Y.; Blazejewski, J.-C.; Charpiot, B.;
Finet, J.-P.; Lester, D. J.; Motherwell, W. B.; Papoula, M. T. B.; Stanforth,
S. P. J. Chem. Soc., Perkin Trans. 1 1985, 2657. (b) Barton, D. H. R.;
Bhatnagar, N. Y.; Finet, J.-P.; Khamsi, J.; Motherwell, W. B.; Stanforth,
S. P. Tetrahedron 1987, 43, 323.
(12) Barton, D. H. R.; Blazejewski, J.-C.; Charpiot, B.; Finet, J.-P.; Motherwell,
W. B.; Papoula, M. T. B.; Stanforth, S. P. J. Chem. Soc., Perkin Trans.
1 1985, 2667.
(13) Arnauld, T.; Barton, D. H. R.; Normant, J.-F.; Doris, E. J. Org. Chem.
1999, 64, 6915 and references therein.
(14) Ooi, T.; Goto, R.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 10494.
Acknowledgment. Acknowledgment is made to the NIH (RO1
GM65149-01), the Research Corporation Cottrell Scholar Award
JA048987I
9
J. AM. CHEM. SOC. VOL. 126, NO. 17, 2004 5351