8 of 9
LI ET AL.
where W is the space charge layer thickness, ε is the
static dielectric constants, ε0 is the vacuum static
dielectric constant, Vs is the surface potential, Nd is
the number of dopant donor atoms, and e is the elec-
tronic charge. It can be seen clearly that W decreases
with the increase of Nd. In this work, when the when
Y doping concentration increases by 5%, the space
charge layer thickness is basically equal to the depth
of light penetration, thus effectively separate the
electron-hole pairs in the region.[48] However, when
the content of Y doping exceeds its optimal value, the
penetration depth of light is greater than the space
charge layer. In this case, the recombination of
electron-hole pairs becomes easier, which reduces the
photocatalytic performance of the photocatalyst.[49]
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able from the corresponding author upon reasonable
request.
REFERENCES
[1] M. N. Chong, B. Jin, C. W. Chow, C. P. Saint, Water Res. 2010,
44, 2997.
[2] X. Sun, Z. W. Liu, H. Yu, Z. Zheng, D. C. Zeng, Mater. Lett.
2018, 219, 225.
[3] S. Pitchaimuthu, K. Honda, S. Suzuki, A. Natio, N. Suzuki, K.
Katsumata, K. Nakata, N. Ishida, N. Kitamura, Y. Idemoto, T.
Kondo, M. Yuasa, O. Takai, T. Ueno, N. Saito, A. Fujishima,
C. Terashima, ACS Omega 2018, 3, 898.
[4] U. Shaislamov, H. Lee, CrystEngComm 2018, 20, 7492.
[5] D. Guerreroaraque, P. Acevedopena, D. Ramirezortega, L.
Lartundorojas, R. Gomez, J. Chem. Technol. Biotechnol. 2017,
92, 1531.
[6] S. Irfan, Y. Shen, S. Rizwan, H. Wang, S. Khan, C. Nan, J. Am.
Ceram. Soc. 2017, 100, 31.
4 | CONCLUSIONS
[7] J. He, R. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, Mater.
Res. Bull. 2013, 48, 3017.
[8] S. Gupta, M. Tomar, A. R. James, V. Gupta, Ferroelectrics
2013, 454, 41.
[9] G. Dong, G. Tan, Y. Luo, W. Liu, H. Ren, A. Xia, Ceram. Int.
2014, 40, 6413.
[10] M. Umar, N. Mahmood, S. U. Awan, S. Fatima, A. Mahmood,
S. Rizwan, RSC Adv. 2019, 9, 17148.
[11] J. L. Xu, D. Xie, C. Yin, T. T. Feng, X. W. Zhang, G. Li, H. M.
Zhao, Y. F. Zhao, S. Ma, T. L. Ren, Y. J. Guan, X. S. Gao, Y. G.
Zhao, J. Appl. Phys. 2013, 114, 154103.1.
[12] A. Mukherjee, S. Basu, L. A. Green, N. T. K. Thanh, M. Pal,
J. Mater. Sci. 2015, 50, 1891.
[13] S. Wu, J. Fang, X. Xu, Z. Liu, X. Zhu, W. Xu, Photochem. Pho-
tobiol. 2012, 88, 1205.
[14] Z. Hu, D. Chen, S. Wang, N. Zhang, L. Qin, Y. Huangm,
Mater. Sci. Eng. B-Adv. 2017, 220, 1.
In this paper, Bi1−xYxFeO3 nano photocatalyst is pre-
pared by calcination MOFs precursor Bi1−xYx[Fe(CN)6]ꢀ
4H2O. Most photocatalyst is composed of spherical par-
ticles of about 50 nm. The Bi0.95Y0.05FeO3 exhibited
the best photocatalytic activity, compared with pure
BiFeO3, Bi0.95Y0.05FeO3 increased the degradation rate
of MO by 1.3 times in 120 min. This may be because
the larger light response range and the lower
photogenerated electron-hole pairs recombination rate.
Moreover, with the increase of doping content, the
penetration depth of light is greater than the space
charge layer; the recombination of electron-hole pairs
becomes easier, which reduces the photocatalytic per-
formance of the photocatalyst. This work provides a
new method for the preparation of BiFeO3 and pro-
vides a reference for the preparation of other perov-
skite photocatalysts.
[15] A. Mukherjee, S. M. Hossain, M. Pal, S. Basu, Appl. Nanosci.
2020, 2, 305.
[16] L. M. S. Medina, G. A. Jorge, R. M. Negri, J. Alloys Compd.
2014, 592, 306.
ACKNOWLEDGMENTS
[17] D. Kuang, P. Tang, X. Wu, S. Yang, X. Ding, Y. Zhang,
J. Alloys Compd. 2016, 671, 192.
[18] V. Singh, S. Sharma, P. K. Jha, M. Kumar, R. K. Dwivedi,
Ceram. Int. 2014, 40, 1971.
[19] Z. Wang, Q. Chen, Green Chem. 2016, 18, 5884.
[20] Z. Wang, Q. Chen, Acta. A. 2017, 194, 158.
[21] Z. Wang, Q. Chen, Nanomaterials-Basel. 2018, 8, 482.
[22] Z. Wang, Q. Chen, ChemistrySelect 2018, 3, 1108.
[23] Z. Wang, R. Gao, X. Deng, G. Chen, W. Cai, C. Fu, Ceram. Int.
2019, 45, 1825.
[24] M. Hu, A. A. Belik, M. Imura, Y. Yamauchi, J. Am. Ceram.
Soc. 2013, 135, 384.
This work was supported by the Scientific and
Technological Research Program of Chongqing Munici-
pal Education Commission (KJQN201801509 and KJZD-
M201901501), the Chongqing Research Program of Basic
Research and Frontier Technology (CSTC2018jcyjAX0416
and cstc2019jcyj-msxmX0071), and the Leading Talents
of Scientific and Technological Innovation in Chongqing
(CSTCCXLJRC201919).
AUTHOR CONTRIBUTIONS
[25] Z. Li, L. Cheng, S. Zhang, Z. Wang, C. Fu, J. Solid State Chem.
2019, 279, 120978.
[26] Z. Li, S. Zhang, R. Xu, Q. Zhang, Z. Wang, C. Fu, Appl.
Zhendong Li: Methodology; validation. Li Cheng: Data
curation; investigation. Ke Zhang: Software. Zhenhua
Wang: Conceptualization; project administration.
Organomet. Chem. 2019, 33, 5105.