Regio- and Stereoselective Biohydroxylations with a Recombinant Escherichia coli
vortex, and followed by phase separation. The organic phase
was dried over anhydrous Na SO and analyzed by GC to
determine the product concentration.
Feichtenhofer, H. Griengl, I. Kopper, A. Lehmann, H.
Weber, Angew. Chem. 1999, 111, 2946–2949; Angew.
Chem. Int. Ed. 1999, 38, 2763–2765; j) A. Raadt, H.
Griengl, H. J. Weber, Chem. Eur. J. 2001, 7, 27–31.
[3] a) K. E. Liu, C. C. Johnson, M. Newcomb, S. J. Lippard,
J. Am. Chem. Soc. 1993, 115, 939–947; b) M. Merkx,
D. A. Kopp, M. H. Sazinsky, J. L. Blazyk, J. Muller, S. J.
Lippard. Angew. Chem. 2001, 113, 2860–2888; Angew.
Chem. Int. Ed. 2001, 40, 2782–2807.
2
4
General Procedure for the Biohydroxylation of
Norbornane 13 with Resting Cells of E. coli (P450pyr)
The biotransformation of norbornane 13 at 5 mM (4.8 mg,
0.05 mmol) to 60 mM (57.6 mg, 0.6 mmol) with resting cells
of E. coli (P450pyr) was performed according to the same
procedure as for the hydroxylation of (À)-b-pinene 11 de-
scribed above.
[4] a) J. B. van Beilen, J. Kingma, B. Witholt, Enzyme
Microb. Technol. 1994, 16, 904–911; b) R. T. Ruetting-
er, G. R. Griffith, M. J. Coon, Arch. Biochem. Biophys.
1
967, 183, 528–537; c) J. A. Peterson, D. Basu, M. J.
General Procedure for the Biohydroxylation of
Tetralin 15 and 6-Methoxytetralin 17 with Resting
Cells of E. coli (P450pyr)
Coon, J. Biol. Chem. 1966, 241, 5162–5164.
[5] a) L. L. Wong, Curr. Opin. Chem. Biol. 1998, 2, 263–
268; b) D. Werck-Reichhart, R. Feyereisen, Adv.
Genome Biol. 2000, 1, 3003; c) T. L. Poulos, B. C.
Finzel, A. J. Howard, J. Mol. Biol. 1987, 195, 687–700;
d) K. G. Ravichandran, S. S. Boddupalli, C. A. Hase-
mann, J. A. Peterson, J. Deisenhofer, Science 1993, 261,
To 10 mL suspensions of resting cells (5 to 10 gcdw/L) of E.
coli (P450pyr) in KP buffer (50 mM; pH 8.0) were added
400 mL of glucose stock solution (50%, w/v) and 6.6–13.2 mg
tetralin 15 or 8.1–16.2 mg 6-methoxytetralin 17 (final con-
centration of 5–10 mM). The mixtures were shaken at
7
1
31–736; e) L. O. Narhi, A. J. Fulco, J. Biol. Chem.
986, 261, 7160–7169; f) H. Koga, B. Rauchfuss, I. C.
300 rpm and 258C. Aliquots (200 mL) were taken out at dif-
Gunsalus, Biochem. Biophys. Res. Commun. 1985, 130,
12–417; g) O. Narhi, L. P. Wen, A. J. Fulco, Mol. Cell.
ferent time points, mixed with 200 mL of ethyl acetate con-
taining 2 mM n-hexadecane as internal standard, and centri-
fuged. The organic phase of the supernatants were separat-
ed, dried over anhydrous Na SO , and analyzed by GC to
4
Biochem. 1988, 79, 63–71; h) J. B. van Beilen, R. Hol-
tackers, D. Luscher, U. Bauer, B. Witholt, W. A. Duetz,
Appl. Environ. Microbiol. 2005, 71, 1737–1744; i) L. P.
Wen, A. J. Fulco, J. Biol. Chem. 1987, 262, 6676–6687;
j) T. Mouri, J. Michizoe, H. Ichinose, N. Kamiya, M.
Goto, Appl. Microbiol. Biotechnol. 2006, 72, 514–520.
6] a) M. W. Peters, P. Meinhold, A. Glieder, F. H. Arnold,
J. Am. Chem. Soc. 2003, 125, 13442–13450; b) E. T.
Farinas, U. Schwaneberg, A. Glieder, F. H. Arnold,
Adv. Synth. Catal. 2001, 343, 601–606; c) J. P. Jones,
E. J. OꢂHare, L. L. Wong, Eur. J. Biochem. 2001, 268,
2
4
determine the product concentration.
[
Acknowledgements
This work was financially supported by Science & Engineer-
ing Research Council of A*STAR, Singapore, through a re-
search grant (project No. 0621010024) and Singapore-MIT
Alliance through a CPE Flagship research program.
1
460–1467; d) R. Weis, M. Winkler, M. Schittmayer, S.
Kambourakis, M. Vink, J. D. Rozzell, A. Glieder, Adv.
Synth. Catal. 2009, 351, 2140–2146; e) M. Landwehr, L.
Hochrein, C. R. Otey, A. Kasrayan, J. E. Bꢃckvall,
F. H. Arnold, J. Am. Chem. Soc. 2006, 128, 6058–6059;
f) T. Kubo, M. W. Peters, P. Meinhold, F. H. Arnold,
Chem. Eur. J. 2006, 12, 1216–1220.
References
[1] a) J. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507–
[
7] a) A. B. Carmichael, L. L. Wong, Eur. J. Biochem. 2001,
5
14; b) M. Costas, K. Chen, L. Que Jr, Coord. Chem.
2
68, 3117–3125; b) C. F. Harford-Cross, A. B. Carmi-
Rev. 2000, 200–202, 517–544; c) A. E. Shilov, G. B.
Shul’pin, Activation and Catalytic Reactions of Saturat-
ed Hydrocarbons in the Presence of Metal Complexes,
Kluwer Academic, Dordrecht, 2000; d) A. Sen, Acc.
Chem. Res. 1998, 31, 550–557; e) A. E. Shilov, G. B.
Shul’pin, Chem. Rev. 1997, 97, 2879–2932; f) D. H. R.
Barton, D. Doller, Acc. Chem. Res. 1992, 25, 504–512.
2] a) Z. Li, D. Chang, Curr. Org. Chem. 2004, 8, 1647–
chael, F. K. Allan, P. A. England, D. A. Rouch, L. L.
Wong, Protein Eng. 2000, 13, 121–128; c) Q. S. Li, J.
Ogawa, R. D. Schmid, S. Shimizu, Appl. Environ. Mi-
crobiol. 2001, 67, 5735–5739.
[
8] a) Z. Li, H. J. Feiten. , J. B. van Beilen, W. Duetz, B.
Witholt, Tetrahedron: Asymmetry 1999, 10, 1323–1333;
b) Z. Li, H. J. Feiten, D. Chang, W. A. Duetz, J. B. van
Beilen, B. Witholt, J. Org. Chem. 2001, 66, 8424–8430;
c) D. Chang, B. Witholt, Z. Li, Org. Lett. 2000, 2, 3949–
3952; d) D. Chang, H. J. Feiten, K. H. Engesser, J. B.
van Beilen, B. Witholt, Z. Li, Org. Lett. 2002, 4, 1859–
1862; e) D. Chang, H. J. Feiten, B. Witholt, Z. Li, Tetra-
hedron: Asymmetry 2002, 13, 2141–2147.
[
1
658; b) Z. Li, J. B. Beilen, W. A Duetz, A. Schmid, A.
Raadt, H. Griengl, B. Witholt, Curr. Opin. Chem. Biol.
2
2
002, 6, 136–144; c) S. G. Burton, Trends Biotechnol.
003, 21, 543–549; d) A. Raadt, H. Griengl, Curr.
Opin. Biotechnol. 2002, 13, 537–542; e) H. L Holland,
H. K Weber, Curr. Opin. Biotechnol. 2000, 11, 547–
5
53; f) H. L. Holland, Steroids 1999, 64, 178–186; g) Y.
[9] a) M. Miyauchi, R. Endo, M. Hisaoka, H. Yasuda, I.
Kawamoto, J. Antibiot. 1997, 50, 429–439; b) J. F. Al-
meida, J. Anaya, N. Martin, M. Grande, J. R. Moran,
M. C. Caballero, Tetrahedron: Asymmetry 1992, 3,
1431–1440.
Chen, J. Xu, X. Xu, Y. Xia, H. Lin, S. Xia, L. Wang,
Tetrahedron: Asymmetry 2007, 18, 2537–2540; h) H. L.
Holland , T. A. Morris , P. J. Nava, M. Zabic, Tetrahe-
dron 1999, 55, 7441–7460; i) G. Braunegg, A. Raadt, S.
Adv. Synth. Catal. 2010, 352, 3380 – 3390
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3389