such that the asymmetric unit contains half of a molecular
formula unit. The solution and refinement of 8 was successfully
carried out by employing a disorder model involving the isopropyl
fragments. Anisotropic displacement parameters were employed
throughout for the non-H atoms. All Ru–H positions were located
in the Fourier difference map and refined; for 7b the Ru–H
Braunstein, Chem. Rev., 2006, 106, 134; (b) V. C. Gibson and S. K.
Spitzmesser, Chem. Rev., 2003, 103, 283; (c) S. D. Ittel, L. K. Johnson
and M. Brookhart, Chem. Rev., 2000, 100, 1169; (d) A. Bader and E.
Lindner, Coord. Chem. Rev., 1991, 108, 27.
7 For a preliminary account of this work, see: M. A. Rankin, K. D. Hesp,
G. Schatte, R. McDonald and M. Stradiotto, Chem. Commun., 2008,
2
50.
8
ORTEP-3 for Windows version 1.074: L. J. Farrugia, J. Appl. Crystal-
logr., 1997, 30, 565.
˚
distances fixed at 1.55 A, while for 8 no such restraints were
applied. All other H-atoms were added at calculated positions and
refined by use of a riding model employing isotropic displacement
parameters based on the isotropic displacement parameter of the
attached atom. The final refined value of the absolute structure
parameter (-0.024(19)) supported that the absolute structure
9 T. Braun, P. Steinert and H. Werner, J. Organomet. Chem., 1995, 488,
69.
0 For selected reports featuring the crystallographic characterization of
alternative (L Ru) ) complexes, see: (a) K. Abdur-Rashid, D. G.
1
1
n
2
·(m-N
2
Gusev, A. J. Lough and R. H. Morris, Organometallics, 2000, 19, 1652;
(b) R. A. T. M. Abbenhuis, I. del R ´ı o, M. M. Bergshoef, J. Boersma, N.
Veldman, A. L. Spek and G. van Koten, Inorg. Chem., 1998, 37, 1749,
and references cited therein.
29
for 7b had been chosen correctly. Additional crystallographic
information is provided in the deposited CIFs (7b, CCDC
1
1 H. Aneetha, M. Jim e´ nez-Tenorio, M. C. Puerta, P. Valerga and K.
Mereiter, Organometallics, 2002, 21, 628.
654072; 8, CCDC 719567).† The ORTEP diagrams featured in
the manuscript was prepared by use of ORTEP-3 for Windows
12 The temperature-dependent coordination of dinitrogen to
i
8
3
Cp*OsP Pr (Cl) had been documented previously: P. B. Glaser
version 1.074.
and T. D. Tilley, Eur. J. Inorg. Chem., 2001, 2747.
3 (a) D. M. Heinekey and W. J. Oldham Jr., Chem. Rev., 1993, 93, 913;
1
(
(
1
b) P. G. Jessop and R. H. Morris, Coord. Chem. Rev., 1992, 121, 155;
c) R. H. Crabtree, M. Lavin and L. Bonneviot, J. Am. Chem. Soc.,
Acknowledgements
986, 108, 4032.
Acknowledgement is made to the Natural Sciences and Engineer-
ing Research Council of Canada (including a Discovery Grant
for M. S., a Postgraduate Scholarship for M. A. R., and a Canada
Graduate Scholarship for K. D. H.), the Canada Foundation for
Innovation, the Nova Scotia Research and Innovation Trust Fund,
and Dalhousie University for their generous support of this work.
We also thank Dr Michael Lumsden and Dr Katherine Robertson
1
1
4 C. Gemel, K. Mereiter, R. Schmid and K. Kirchner, Organometallics,
1997, 16, 5601.
5 (a) R. N. Perutz and S. Sabo-Etienne, Angew. Chem., Int. Ed., 2007, 46,
2
2
578; (b) S. Lachaize and S. Sabo-Etienne, Eur. J. Inorg. Chem., 2006,
115; (c) G. I. Nikonov, Adv. Inorg. Chem., 2005, 53, 217; (d) Z. Lin,
Chem. Soc. Rev., 2002, 31, 239; (e) J. Y. Corey and J. Braddock-Wilking,
Chem. Rev., 1999, 99, 175.
6 W.-H. Kwok, G.-L. Lu, C. E. F. Rickard, W. R. Roper and L. J. Wright,
J. Organomet. Chem., 2004, 689, 2979.
1
1
(
Atlantic Region Magnetic Resonance Center, Dalhousie) for
7 For discussions regarding the interpretation of JSiH values, see: S. K.
Ignatov, N. H. Rees, B. R. Tyrrell, S. R. Dubberley, A. G. Razuvaev, P.
Mountford and G. I. Nikonov, Chem.–Eur. J., 2004, 10, 4991.
8 Alternatively, the direct addition of Si–H across the O–Ru linkage in
assistance in the acquisition of NMR data.
1
3
may occur en route to 7a,b, in keeping with the reactivity observed
Notes and References
2 + -
between phosphinothiolate salts of the type [Cp*Ir(k -P,S)] X and
silanes: K. D. Hesp, R. McDonald, M. J. Ferguson and M. Stradiotto,
J. Am. Chem. Soc., 2008, 130, 16394.
1
For selected reviews, see: (a) C. Bruneau, J.-L. Renaud and B.
Demerseman, Chem.–Eur. J., 2006, 12, 5178; (b) B. M. Trost, M. U.
Frederiksen and M. T. Rudd, Angew. Chem., Int. Ed., 2005, 44, 6630;
19 The transformation of rhodium–silylene (L
n
(H)
2
=
2
Rh SiR ) species,
(
c) M. Jim e´ nez-Tenorio, M. C. Puerta and P. Valerga, Eur. J. Inorg.
formed via double geminal Si–H bond activation, into L
(H)Rh–SiR –
n 2
Chem., 2004, 17; (d) H. Nagashima, H. Kondo, T. Hayashida, Y.
Yamaguchi, M. Gondo, S. Masuda, K. Miyazaki, K. Matsubara and
K. Kirchner, Coord. Chem. Rev., 2003, 245, 177; (e) S. G. Davies, J. P.
McNally and A. J. Smallridge, Adv. Inorg. Chem., 1990, 30, 1.
OCHR¢ species related to 7a,b has been put forth as a key step in a
2
recently proposed ketone hydrosilylation mechanism: N. Schneider, M.
Finger, C. Haferkemper, S. Bellemin-Laponnaz, P. Hofmann and L. H.
Gade, Angew. Chem., Int. Ed., 2009, 48, 1609.
2
2
3
4
For an example in which the intermediacy of such Cp*Ru(k -L,X)
20 Selected reviews: (a) H. Braunschweig, C. Kollann and F. Seeler,
Struct. Bonding, 2008, 130, 1; (b) D. L. Kays and S. Aldridge, Struct.
Bonding, 2008, 130, 29; (c) C. E. Anderson, H. Braunschweig and
R. D. Dewhurst, Organometallics, 2008, 27, 6381; (d) H. Braunschweig,
C. Kollann and D. Rais, Angew. Chem., Int. Ed., 2006, 45, 5254;
(e) S. Aldridge and D. L. Coombs, Coord. Chem. Rev., 2004, 248,
535; (f) C. M. Crudden and D. Edwards, Eur. J. Org. Chem., 2003,
4695.
complexes in catalytic transformations has been proposed, see: M. Ito,
A. Sakaguchi, C. Kobayashi and T. Ikariya, J. Am. Chem. Soc., 2007,
1
29, 290, and references cited therein.
(a) R. Waterman, P. G. Hayes and T. D. Tilley, Acc. Chem. Res., 2007,
4
0, 712; (b) P. B. Glaser and T. D. Tilley, J. Am. Chem. Soc., 2003, 125,
3640; (c) B. K. Campion, R. H. Heyn and T. D. Tilley, J. Chem. Soc.,
1
Chem. Commun., 1988, 278.
(a) T. J. Johnson, K. Folting, W. E. Streib, J. D. Martin, J. C. Huffman,
S. A. Jackson, O. Eisenstein and K. G. Caulton, Inorg. Chem., 1995,
21 For recent reports documenting the reactivity of ruthenium complexes
with MesBH , see: (a) K. D. Hesp, M. A. Rankin, R. McDonald and M.
2
3
4, 488; (b) C. C. Bickford, T. J. Johnson, E. R. Davidson and K. G.
Stradiotto, Inorg. Chem., 2008, 47, 7471; (b) G. Alcaraz, U. Helmstedt,
E. Clot, L. Vendier and S. Sabo-Etienne, J. Am. Chem. Soc., 2008,
130, 12878; (c) G. Alcaraz, E. Clot, U. Helmstedt, L. Vendier and S.
Sabo-Etienne, J. Am. Chem. Soc., 2007, 129, 8704.
Caulton, Inorg. Chem., 1994, 33, 1080; (c) T. J. Johnson, P. S. Coan
and K. G. Caulton, Inorg. Chem., 1993, 32, 4594; (d) T. J. Johnson,
J. C. Huffman and K. G. Caulton, J. Am. Chem. Soc., 1992, 114,
2
725.
22 For some recent reports of crystallographically characterized com-
plexes featuring a Ru–H–B bridging motif, see: (a) M. A. Rankin,
D. F. MacLean, R. McDonald, M. J. Ferguson, M. D. Lumsden and
M. Stradiotto, Organometallics, 2009, 28, 74; (b) G. C. Rudolf, A.
Hamilton, A. G. Orpen and G. R. Owen, Chem. Commun., 2009,
553; (c) Y. Kawano, M. Hashiva and M. Shimoi, Organometallics,
2006, 25, 4420; (d) S. L. Kuan, W. K. Leong, L. Y. Goh and R. D.
Webster, J. Organomet. Chem., 2006, 691, 907; (e) N. Merle, C. G.
Frost, G. Koicok-K o¨ hn, M. C. Willis and A. S. Weller, J. Organomet.
Chem., 2005, 690, 2829; (f) S. Lachaize, K. Essalah, V. Montiel-
Palma, L. Vendier, B. Chaudret, J.-C. Barthelat and S. Sabo-Etienne,
Organometallics, 2005, 24, 2935; (g) Reference 21 herein.
5
Selected recent reports and reviews: (a) H. Gr u¨ tzmacher, Angew. Chem.,
Int. Ed., 2008, 47, 1814; (b) T. B. Gunnoe, Eur. J. Inorg. Chem., 2007,
1
185; (c) E. J. Derrah, D. A. Pantazis, R. McDonald and L. Rosenberg,
Organometallics, 2007, 26, 1473; (d) T. Ikariya and A. J. Blacker, Acc.
Chem. Res., 2007, 40, 1300; (e) T. Ikariya, K. Murata and R. Noyori,
Org. Biomol. Chem., 2006, 4, 393; (f) S. E. Clapham, A. Hadzovic and
R. H. Morris, Coord. Chem. Rev., 2004, 248, 2201; (g) J. R. Fulton,
A. W. Holland, D. J. Fox and R. G. Bergman, Acc. Chem. Res., 2002,
3
5, 44.
2
6
The utility of k -P,O-phosphinoenolate ligation has been demonstrated
in alternative classes of reactive transition metal complexes: (a) P.
4
764 | Dalton Trans., 2009, 4756–4765
This journal is © The Royal Society of Chemistry 2009