O. R. Sua´rez-Castillo et al. / Tetrahedron Letters 49 (2008) 996–999
999
5. (a) Marcantoni, E.; Massaccesi, M.; Torregiani, E. J. Org. Chem.
2001, 66, 4430–4432; (b) Barbayianni, E.; Fotakopoulou, I.; Schmidt,
M.; Constantinou-Kokotou, V.; Bornscheuer, U. T.; Kokotos, G. J.
Org. Chem. 2005, 70, 8730–8733; (c) Dhaon, M. K.; Olsen, R. K.;
Ramasamy, K. J. Org. Chem. 1982, 47, 1962–1965.
6. Chee, G.-L. Synlett 2001, 1593–1595.
7. Yadav, J. S.; Reddy, B. V. S.; Rao, C. V.; Chand, P. K.; Prasad, A. R.
Synlett 2002, 137–139.
and also gave very high yields. The presence of an electron
donating group retards the reaction rate, while the presence
of an electron withdrawing group does the contrary, as it is
evident in entries 2 and 3. These results, together with those
obtained by the treatment of 1 or 2 with different alcohols
(Tables 1 and 2), clearly indicate that these esters undergo
direct nucleophilic attack at the carbonyl ester group by the
corresponding alkoxide.
´
´
´
8. Suarez-Castillo, O. R.; Montiel-Ortega, L. A.; Melendez-Rodrıguez,
´
M.; Sanchez-Zavala, M. Tetrahedron Lett. 2007, 48, 17–20.
In conclusion, the present procedure using t-BuNH2/
alcohol/LiBr provides an interesting example for transe-
sterification. Various types of carboxylic esters including
aliphatic and aromatic compounds have been subjected
to transesterification using a variety of alcohols according
to this procedure.18 The reactions are, in general, very clean
and give very high yields. Besides, the simplicity of this
approach and the low cost of the reagents enhance its
attractiveness. The method is especially well applicable
when going from higher to lower hindered esters but harsh
reaction conditions are needed for the reversal process.
Works on other reactions catalyzed by t-BuNH2/MeOH
are currently underway in our laboratory.
9. (a) Bodanszky, M.; Sheehan, J. T. Chem. Ind. 1966, 1597; (b) Reddy,
G. L.; Bikshapathy, E.; Nagaraj, R. Tetrahedron Lett. 1985, 26, 4257–
4260; (c) Barton, M. A.; Lemieux, R. U.; Savoie, J. Y. J. Am. Chem.
Soc. 1973, 95, 4501–4506; (d) Holmes, D. L.; Smith, E. M.; Nowick, J.
S. J. Am. Chem. Soc. 1997, 119, 7665–7669.
10. (a) Findlay, P. H.; Sherrington, D. C. Macromolecules 1999, 32, 5970;
(b) Bories-Azeau, X.; Armes, S. P. Macromolecules 2002, 35, 10241–
10243.
ˇ
11. Cercˇe, T.; Peter, S.; Weidner, E. Ind. Eng. Chem. Res. 2005, 44, 9535–
9541.
12. (a) Hafez, A. M.; Dudding, T.; Wagerle, T. R.; Shah, M. H.; Taggi,
A. E.; Lectka, T. J. Org. Chem. 2003, 68, 5819–5825; (b) Dove, A. P.;
Pratt, R. C.; Lohmeijer, B. G. G.; Waymouth, R. M.; Hedrick, J. L. J.
Am. Chem. Soc. 2005, 127, 13798–13799.
13. (a) Hagiwara, H.; Koseki, A.; Isobe, K.; Shimizu, K.-i.; Hoshi, T.;
Suzuki, T. Synlett 2004, 2188–2190; (b) Hans, J. J.; Driver, R. W.;
Burke, S. D. J. Org. Chem. 1999, 64, 1430–1431.
Acknowledgement
14. (a) Tawfik, D. S.; Eshhar, Z.; Bentolila, A.; Green, B. S. Synthesis
1993, 968–972; (b) Seebach, D.; Thaler, A.; Blaser, D.; Ko, S. Y. Helv.
Chim. Acta 1991, 74, 1102–1118.
15. (a) Wayman, K. A.; Sammakia, T. Org. Lett. 2003, 5, 4105–4108; (b)
Notte, G. T.; Sammakia, T.; Steel, P. J. J. Am. Chem. Soc. 2005, 127,
13502–13503.
We are pleased to acknowledge the financial support
from UAEH-PAI 2006-28B for this investigation.
16. (a) Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synthesis 1999, 58–60;
(b) Saraswathy, V. G.; Sankararaman, S. J. Org. Chem. 1994, 59,
4665–4670; (c) Mojtahedi, M. M.; Akbarzadeh, E.; Sharifi, R.; Abaee,
M. S. Org. Lett. 2007, 9, 2791–2793.
References and notes
1. Green, T. W.; Wuts, P. G. M. In Protective Groups in Organic
Synthesis, 3rd ed.; Wiley: New York, 1999.
17. (a) Minegishi, S.; Kobayashi, S.; Mayr, H. . J. Am. Chem. Soc. 2004,
126, 5174–5181; (b) Brotzel, F.; Chu, Y. C.; Mayr, H. J. Org. Chem.
2007, 72, 3679–3688.
2. (a) Larock, R. C. In Comprehensive Organic Transformation; Wiley-
VCH: New York, London, 1999; (b) Smith, M. B.; March, J. In
Advanced Organic Chemistry, 5th ed.; Wiley: New York, 2001; (c)
Dhimitruka, L.; SantaLucia, J. Org. Lett. 2006, 8, 47–50.
18. Typical experimental procedure:
To the appropriate ester (0.6 mmol) in the corresponding alcohol
(5 mL) was added t-BuNH2 (20 equiv, 1.26 mL) or t-BuNH2 (5 equiv,
0.315 mL)/LiBr (5 equiv, 0.261 g), and the mixture was stirred under
reflux for the appropriate time (Tables). After complete conversion, as
indicated by TLC or 1H NMR spectroscopy, the volatile reagents
were evaporated to afford the pure transesterified product in the case
of esters treated only with t-BuNH2/ROH. For esters treated with
t-BuNH2/ROH/LiBr the residue was diluted with EtOAc (50 mL),
washed with saturated aqueous NH4Cl solution (2 Â 15 mL), dried
over anhydrous Na2SO4 and evaporated to give the pure transe-
sterified product.
3. (a) Otera, J. Chem. Rev. 1993, 93, 1449–1470; and references cited
therein; (b) Guieysse, D.; Salagnad, C.; Monsan, P.; Remaud-Simeon,
M. Tetrahedron: Asymmetry 2003, 14, 317–323.
4. (a) Grasa, G. A.; Singh, R.; Nolan, S. P. Synthesis 2004, 971–985; and
´
references cited therein; (b) Janczewski, D.; Synoradzki, L.; Włostow-
ski, M. Synlett 2003, 420–422; (c) Padhi, S. K.; Chadha, A. Synlett
2003, 639–642; (d) Ramalinga, K.; Vijayalakshmi, P.; Kaimal, T. N.
B. Tetrahedron Lett. 2002, 43, 879–882; (e) Srinivas, K. V. N. S.;
Mahender, I.; Das, B. Synthesis 2003, 2479–2482; (f) Shapiro, G.;
Marzi, M. J. Org. Chem. 1997, 62, 7096–7097; (g) Ito, M.; Sakai, K.;
Tsubomura, T.; Takita, Y.-s. Bull. Chem. Soc. Jpn. 1999, 72, 239–247;
(h) Bose, D. S.; Satyender, A.; Das, A. P. R.; Mereyala, H. B.
Synthesis 2006, 2392–2396; (i) Remme, N.; Koschek, K.; Schneider,
C. Synlett 2007, 491–493.
The identity and the purity of the reaction products were estab-
lished by their 1H NMR data by direct comparison with authentic
samples.