Page 5 of 6
ACS Catalysis
This research was supported by the European Research Council (ERC
(10) Reviews on catalysis by Fe, Ni, and Co complexes: (a) Bullock, R. M.
Abundant Metals Give Precious Hydrogenation Performance. Science
1
2
3
4
5
6
7
8
9
AdG 692775). D. M. holds the Israel Matz Professorial Chair of Organic
Chemistry. U. K. D is thankful to The Science & Engineering Research
Board (SERB), DST, and Govt. of India for the SERB Overseas Post-
doctoral Fellowship.
2
013, 342, 1054–1055. (b) Chirik, P.; Morris, R. Getting Down to Earth:
The Renaissance of Catalysis with Abundant Metals. Acc. Chem. Res. 2015
8, 2495–2495. (c) Bauer, I.; Knoelker, H. -J. Iron Catalysis in Organic Syn-
,
4
thesis. Chem. Rev. 2015, 115, 3170–3387. (d) Morris, R. H. Exploiting
Metal–Ligand Bifunctional Reactions in the Design of Iron Asymmetric Hy-
drogenation Catalysts. Acc. Chem. Res. 2015, 48, 1494–1502. (e) Chirik,
P. J. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with
Both Redox-Active and Strong Field Ligands. Acc. Chem. Res. 2015, 48,
REFERENCES
(
1) (a) Ogliaruso, M. A.; Wolfe, J. F. Synthesis of Carboxylic Acids, Ester-
sand Their Derivatives; John Wiley & Sons Ltd: Hoboken, NJ, 1991, p 684.
(
b) Otera, J. Esterification: Methods, Reactions and Applications, Wiley-
1
687–1695. (f) Chakraborty, S.; Bhattacharya, P.; Dai, H.; Guan, H. Nickel
VCH, Weinheim, 2003, p 303.
and Iron Pincer Complexes as Catalysts for the Reduction of Carbonyl Com-
pounds. Acc. Chem. Res. 2015, 48, 1995-2003. (g) McNeill, W.; Ritter, T.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(2) Otera, J.; Nishikido, J. Esterification: Methods, Reactions, and Applica-
tions, Wiley-VCH: Weinheim, Germany, 2010, p 386.
1
,4-Functionalization of 1,3-Dienes With Low-Valent Iron Catalysts. Acc.
(3) (a) Yamamoto, N.; Obora, Y.; Ishii, Y. Iridium-Catalyzed Oxidative Me-
Chem. Res. 2015, 48, 2330–2343. (h) Benito-Garagorri, D.; Kirchner, K.
Modularly Designed Transition Metal PNP and PCP Pincer Complexes
based on Aminophosphines: Synthesis and Catalytic Applications. Acc.
Chem. Res. 2008, 41, 201–213. (i) Zell, T.; Milstein, D. Hydrogenation and
Dehydrogenation Iron Pincer Catalysts Capable of Metal–Ligand Coopera-
tion by Aromatization/Dearomatization. Acc. Chem. Res. 2015, 48, 1979–
1994. (j) L. Renaud, J.; Gaillard, S. Recent Advances in Iron- and Cobalt-
Complex-Catalyzed Tandem/Consecutive Processes Involving Hydrogena-
tion. Synthesis 2016, 48, 3659–3683.
thyl Esterification of Primary Alcohols and Diols with Methanol. J. Org.
Chem. 2011, 76, 2937–2941. (b) Gowrisankar, S.; Neumann, H.; Beller, M.
Angew. Chem. Int. Ed. 2011, 50, 5139–5143. (c) Liu, C.; Wang, J.; Meng,
L.; Deng, Y.; Li, Y.; Lei, A. Palladium-Catalyzed Aerobic Oxidative Direct
Esterification of Alcohols. Angew. Chem. Int. Ed. 2011, 50, 5144–5148. (d)
Tang, S.; Y. Jiwen.; Liu, C.; Lei, A. Direct Oxidative Esterification of Alco-
hols. Dalton Trans. 2014, 43, 13460–13470. (e) Xia, J.; Shao, A.; Tang, S.;
Gao, X.; Gao, M.; Lei, A. Palladium-catalysed Oxidative Cross-esterification
Between Two Alcohols. Org. Biomol. Chem. 2015, 13, 6154–6157.
(
11) Mukherjee, A.; Nerush, A.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.;
(
4) (a) Jagadeesh, R. V.; Junge, H.; Pohl, M. –M.; Radnik, J.; Brückner, A.;
Beller, M. Selective Oxidation of Alcohols to Esters Using Heterogeneous
Co
–N@C Catalysts under Mild Conditions. J. Am. Chem. Soc. 2013
35, 10776−10782. (b) Su, H.; Zhang, K. -X.; Zhang, B. Wang, H. -H.; Yu,
Espinosa Jalapa, N. A.; Milstein, D. Manganese-Catalyzed Environmentally
Benign Dehydrogenative Coupling of Alcohols and Amines to Form Al-
3
O
4
,
dimines and H
2
: A Catalytic and Mechanistic Study. J. Am. Chem. Soc. 2016
,
1
138, 4298-4301.
Q. -Y.; Li, X.-H.; Antonietti, M.; Chen, J. –S. Activating Cobalt Nanoparti-
cles via the Mott–Schottky Effect in Nitrogen-Rich Carbon Shells for Base-
Free Aerobic Oxidation of Alcohols to Esters. J. Am. Chem. Soc. 2017, 139,
(12) (a) Nerush, A.; Vogt, M.; Gellrich, U.; Leitus, G.; Ben-David, Y.; Mil-
stein, D. Template Catalysis by Metal–Ligand Cooperation. C–C Bond
Formation via Conjugate Addition of Non-activated Nitriles under Mild,
Base-free Conditions Catalyzed by a Manganese Pincer Complex. J. Am.
8
11−818. (c) Mannel, D. S.; Ahmed, M. S.; Root, T. W. Stahl, S. S. Discovery
of Multicomponent Heterogeneous Catalysts via Admixture Screening:
PdBiTe Catalysts for Aerobic Oxidative Esterification of Primary Alcohols.
J. Am. Chem. Soc. 2017, 139, 1690−1698. (d) Xiao, Q.; Liu, Z.; A. Bo, A.;
Zavahir, S.; Sarina, S.; Bottle, S.; Riches, J. D.; Zhu, H. Catalytic Transfor-
,
Chem. Soc. 2016 138, 6985–6997. (b) Garbe, M.; Junge, K.; Beller, M. Ho-
mogeneous Catalysis by Manganese‐Based Pincer Complexes. Eur. J. Org.
Chem. 2017, 4344-4362. (c) Maji, B.; Barman, M. K. Recent Develop-
ments of Manganese Complexes for Catalytic Hydrogenation and Dehydro-
genation Reactions. Synthesis 2017, 49, 3377–3393. (d) Chakraborty, S.;
Das, U. K.; Ben-David, Y.; Milstein, D. Manganese Catalyzed α-Olefination
of Nitriles by Primary Alcohols. J. Am. Chem. Soc. 2017, 139, 11710–11713.
mation of Aliphatic Alcohols to Corresponding Esters in O
2
under Neutral
Conditions Using Visible-Light Irradiation. J. Am. Chem. Soc. 2015, 137,
1
956−1966.
(5) Blum, Y.; Shvo, Y.
clone)(CO) (H)
hols to Esters. J. Organomet. Chem. 1985, 282, C7–C10.
6) (a) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Facile Conversion
4
Catalytically reactive (η -tetracy-
(
e) Das, U. K.; Chakraborty, S.; Diskin-Posner, Y.; Milstein, D. Direct Con-
2
2
Ru and Related Complexes in Dehydrogenation of Alco-
version of Alcohols into Alkenes by Dehydrogenative Coupling with Hydra-
zine/Hydrazone Catalyzed by Manganese. Angew. Chem. Int. Ed. 2018, 57,
(
1
3444–13448. (f) Gorgas, N.; Kirchner, K. Isoelectronic Manganese and
of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Com-
plexes. J. Am. Chem. Soc. 2005, 127, 10840–10841. (b) Langer, R.; Fuchs,
I.; Vogt, M.; Balaraman, E.; Diskin-Posner, Y.; Shimon, Ljw.; Ben-David, Y.;
Milstein, D. Stepwise Metal–Ligand Cooperation by a Reversible Aromati-
zation/Deconjugation Sequence in Ruthenium Complexes with a Tetraden-
tate Phenanthroline‐Based Ligand. Chem. Eur. J. 2013, 19, 3407–3414. (c)
Fogler, E.; Iron, M. A.; Zhang, J.; Ben-David, Y.; Diskin-Posner, Y.; Leitus,
G.; Shimon, Ljw.; Milstein, D. Ru(0) and Ru(II) Nitrosyl Pincer Com-
plexes: Structure, Reactivity, and Catalytic Activity. Inorg. Chem. 2013, 52,
11469−11479. (d) Fogler, E; Garg, Ja; Hu, P; Leitus, G; Shimon, Ljw; Mil-
stein, D. System with Potential Dual Modes of Metal–Ligand Cooperation:
Highly Catalytically Active Pyridine‐Based PNNH–Ru Pincer Complexes.
Chem. Eur. J. 2014, 20, 15727–15731.
Iron Hydrogenation/Dehydrogenation Catalysts: Similarities and Diver-
gences. Acc. Chem. Res. 2018, 51, 1558−1569. (g) Kallmeier, F.; Kempe, R.
Manganese Complexes for (De)Hydrogenation Catalysis: A Comparison to
Cobalt and Iron Catalysts. Angew. Chem. Int. Ed. 2018, 57, 46-60. (h)
Mukherjee, A.; Milstein, D. Homogeneous Catalysis by Cobalt and Man-
ganese Pincer Complexes. ACS Catal. 2018, 8, 11435−11469.
(13) Nguyen, D. H.; Trivelli, X.; Capet, F; Paul, J -F.; Dumeigni, F. Gauvin,
R. M. Manganese Pincer Complexes for the Base-Free, Acceptorless Dehy-
drogenative Coupling of Alcohols to Esters: Development, Scope, and Un-
derstanding. ACS Catal. 2017, 7, 2022–2032.
(
14) (a) Chakraborty, S.; Gellrich, U.; Diskin-Posner, Y.; Leitus, G.; Av-
ram, L.; Milstein, D. Manganese‐Catalyzed N‐Formylation of Amines by
Methanol Liberating H : A Catalytic and Mechanistic Study. Angew. Chem.
2
(7) Srimani, D.; Balaraman, E.; Gnanaprakasam, B.; Ben-David, Y.; Milstein,
Int. Ed. 2017, 56, 4229-4233. (b) Espinosa-Jalapa, N. A.; Nerush, A.;
Shimon, L. J. W.; Leitus, G.; Avram, L.; Ben-David, Y.; Milstein, D. Manga-
D. Ruthenium Pincer‐Catalyzed Cross‐Dehydrogenative Coupling of Pri-
mary Alcohols with Secondary Alcohols under Neutral Conditions. Adv.
Synth. Catal. 2012, 354, 2403–2406.
nese‐Catalyzed Hydrogenation of Esters to Alcohols. Chem. Eur. J. 2017
,
2
3, 5934-5938. (c) Kumar, A.; Espinosa-Jalapa, N. A.; Leitus, G.; Diskin-
(
8) Gnanaprakasam, B.; Ben-David, Y.; Milstein, D. Ruthenium Pincer‐Cat-
Posner, Y. Avram, L.; Milstein, D. Direct Synthesis of Amides by Dehydro-
genative Coupling of Amines with either Alcohols or Esters: Manganese Pin-
cer Complex as Catalyst. Angew. Chem. Int. Ed. 2017, 56, 14992-14996. (d)
Das, U. K.; Ben-David, Y.; Diskin-Posner, Y.; Milstein, D. N‐Substituted
Hydrazones by Manganese‐Catalyzed Coupling of Alcohols with Hydra-
zine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One Sys-
tem. Angew. Chem. Int. Ed. 2018, 57, 2179–2182.
alyzed Acylation of Alcohols Using Esters with Liberation of Hydrogen un-
der Neutral Conditions. Adv. Synth. Catal. 2010, 352, 3169–3173.
(
9) Cheng, J.; Zhu, M.; Wang, C.; Li, J.; Jiang, X.; Wei, Y.; Tang, W.; Xuea,
D.; Xiao, J. Chemoselective Dehydrogenative Esterification of Aldehydes
and Alcohols with a Dimeric Rhodium(II) Catalyst. Chem. Sci. 2016, 7,
4428–4434.
ACS Paragon Plus Environment