12 of 13
BAHRAMI AND TARGHAN
[13] M. Gholinejad, F. Hamed, P. Biji, Dalton Trans. 2015, 44,
reaction, which was monitored by TLC, ethylacetate
(10 mL) was added to the mixture reaction. The catalyst
was separated by centrifugation. Water (15 mL) was
added to the ethylacetate phase and decanted. After evap-
oration of the solvent, the resulting crude products were
product was purified in ethanol–water giving the pure
products in high to excellent yields.
14293.
[14] V. Polshettiwar, A. Molnár, Tetrahedron 2007, 63, 6949.
[15] L. Yin, J. Liebscher, Chem. Rev. 2007, 107, 133.
[16] M. Lamblin, L. Nassar‐Hardy, J. C. Hierso, E. Fouquet, F. X.
Felpin, Adv. Synth. Catal. 2010, 352, 33.
[17] M. Mora, C. Jimenez‐Sanchidrian, J. Rafael Ruiz, Curr. Org.
Chem. 2012, 16, 1128.
[18] L. Djakovitch, F. X. Felpin, ChemCatChem 2014, 6, 2175.
4 | CONCLUSIONS
[19] T. Baran, I. Sargın, M. Kaya, P. Mulerčikas, S. Kazlauskaitė, A.
Mentes, Chem. Eng. J. 2018, 331, 102.
In summary, we have successfully prepared and charac-
terized GO supported palladium nanoparticles as a highly
efficient and general nanocatalyst that is produced by an
inexpensive and simple method. As expected, this
nanocatalyst exhibited excellent activity in the cross‐
coupling reactions. Ultimately, we believe that this work
provides directions for future rational design and produc-
tion of nanocatalysts and heterogenization of metal cata-
lysts. Further studies will be devoted to extend the
development of this class of nanocatalysts in order to
improve their catalytic efficiency in cross‐coupling
reactions.
[20] R. Jin, Nanotechnol. Rev. 2012, 1, 31.
[21] V. Polshettiwar, R. S. Varma, Green Chem. 2010, 12, 743.
[22] X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, J. Am.
Chem. Soc. 2011, 133, 3693.
[23] L. Wang, Y. Wang, X. Wang, X. Feng, X. Ye, J. Fu,
Nanomaterials 2018, 8, 113.
[24] D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem. Int. Ed. 2005,
44, 7852.
[25] A. M. Dimiev, J. M. Tour, ACS Nano 2014, 8, 3060.
[26] K. Bahrami, S. N. Kamrani, Appl. Organomet. Chem. 2018, 32,
4102.
[27] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z.
Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano
2010, 4, 4806.
ACKNOWLEDGEMENTS
[28] J. Paredes, S. Villar‐Rodil, A. Martínez‐Alonso, J. Tascon, Lang-
muir 2008, 24, 10560.
The authors acknowledge the Razi University Research
Council for support of this work.
[29] F. Li, J. Zhao, Z. Chen, J. Phys. Chem. C 2012, 16, 2507.
[30] D. Chen, H. Feng, J. Li, Chem. Rev. 2012, 112, 6027.
[31] S. Ray, Applications of graphene and graphene‐oxide based
nanomaterials, William Andrew, USA, 2015.
ORCID
[32] G. T. Morgan, F. H. Burstall, J. Chem. Soc. 1932, 20.
[33] D. Dong, Z. Li, D. Liu, N. Yu, H. Zhao, H. Chen, J. Liua, D. Liu,
New J. Chem. 2018, 42, 9317.
REFERENCES
[34] C. Zanardi, B. Zanfrognini, S. Morandi, F. Terzi, L. Pigani, L.
[1] P. Devendar, R. Qu, W. Kang, B. He, G. Yang, J. Agric. Food
Chem. 2018, 66, 8914.
Pasquali, R. Seeber, Electrochim. Acta 2018, 260, 314.
[35] W. Spahni, G. Calzagerri, Helv. Chim. Acta 1984, 67, 450.
[2] G. C. Fortman, S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151.
[3] J.‐P. Corbet, G. Mignani, Chem. Rev. 2006, 106, 2651.
[4] N. Yasuda, J. Organomet. Chem. 2002, 653, 279.
[36] W. S. Hummers Jr., R. E. Offeman, J. Am. Chem. Soc. 1958, 80,
1339.
[37] K. Bahrami, M. M. Khodaei, F. S. Meibodi, Appl. Organomet.
Chem. 2017, 31, 3627.
[5] D. Sierra, G. Brito, M. Fuentealba, A. H. Klahn, Inorg. Chem.
Commun. 2018, 88, 30.
[38] S. Vaduvescu, P. G. Potvin, Eur. J. Inorg. Chem. 2004, 8, 1763.
[6] P. Ruiz‐Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564.
[39] C. Putta, V. Sharavath, S. Sarkara, S. Ghosh, RSC Adv. 2015, 5,
6652.
[7] D. Lopez‐Tejedor, B. Rivas, J. M. Palomo, Molecules 2018, 23,
2358.
[40] C. B. Putta, S. Ghosh, Adv. Synth. Catal. 2011, 353, 1889.
[41] N. Basavegowda, K. Mishra, Y. R. Lee, New J. Chem. 2014, 39, 72.
[8] D. H. Howe, R. M. McDaniel, A. J. D. Magenau, Macromole-
cules 2017, 50, 8010.
[42] M. R. Shaik, Z. J. Q. Ali, M. Khan, M. Kuniyil, M. E. Assal, H.
Z. Alkhathlan, A. Al‐Warthan, M. R. H. Siddiqui, M. Khan, S.
F. Adil, Molecules 2017, 22, 165.
[9] S. Chu, N. Münster, T. Balan, M. D. Smith, Angew. Chem. Int.
Ed. 2016, 55, 14306.
[10] S. N. Jadhav, A. S. Kumbhar, C. V. Rode, R. S. Salunkhe, Green
Chem. 2016, 18, 1898.
[43] E. Ramirez, S. Jansat, K. Philippot, P. Lecante, M. Gomez, A. M.
Masdeu‐Bulto, B. Chaudret, J. Organom. Chem. 2004, 689, 4601.
[11] C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V.
[44] S. Sobhani, Z. Zeraatkar, F. Zarifi, New J. Chem. 2015, 39, 7076.
Snieckus, Angew. Chem. Int. Ed. 2012, 51, 5062.
[45] A. Villa, D. Wang, P. Spontoni, R. Arrigo, D. S. Su, L. Pratia,
[12] J. M. Brown, Angew. Chem. Int. Ed. 2015, 54, 5003.
Catal. Today 2010, 157, 89.