Yang et al.
FULL PAPER
Acknowledgement
The authors thank the National Key Basic Research
Program of China (Nos. 2010CB833304 and
2013CB834505), the National Natural Science Founda-
tion of China (Nos. 91027041 and 20920102033) for
financial support, and Key Laboratory of Photochemical
Conversion and Optoelectronic Materials, TIPC, CAS
for financial support.
References
Figure 3 GC trace of product 3 obtained in HLC-1 (up) and
[1] Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley-
Interscience, New York, 1994.
HLC-2 (down) microreactors in the presence of triethylamine.
[2] Cervinka, O. Enantioselective Reactions in Organic Chemistry, Ellis
Horwood, London, 1995.
[3] Everitt, S. R. L.; Inoue, Y. In Molecular and Supramolecular Pho-
tochemistry, Vol. 3, Eds.: Ramamurthy, V.; Schanze, K. S., Marcell
Dekker, New York, 1999, p. 71.
[4] Molecular and Supramolecular Photochemistry, Vol. 11, Eds.: Inoue,
Y.; Ramamurthy, V., Marcell Dekker, New York, 2004.
[5] Yang, C.; Mori, T.; Origane, Y.; HoKo, Y.; Selvapalam, N.; Kim, K.;
Inoue, Y. J. Am. Chem. Soc. 2008, 130, 8574.
[6] Yang, C.; Ke, C. F.; Liang, W. T.; Fukuhara, G.; Mori, T.; Liu, Y.;
Inoue, Y. J. Am. Chem. Soc. 2011, 133, 13786.
[7] Xu, H. X.; Cheng, S. F.; Yang, X. J.; Chen, B.; Chen, Y.; Zhang,
L.-P.; Wu, L.-Z.; Fang, W. H.; Tung, C.-H.; Weiss, R. G. J. Org.
Chem. 2012, 77, 1685.
[8] Shailaja, J.; Ponchot, K. J.; Rammamurthy, V. Org. Lett. 2000, 2,
937.
[9] Lv, F.-F.; Wu, L.-Z.; Zhang, L.-P.; Tung, C.-H.; Zheng, L.-Q. Chin.
J. Org. Chem. 2006, 26, 599.
[10] Bach, T.; Bergmann, H.; Grosch, B.; Harms, K. J. Am. Chem. Soc.
2002, 124, 7982.
donor are located in different domains of the HLCs.
Of particular interests is the enantioselective photo-
chemical reaction of 1 was examined using mode 1 and
mode 2 microreactors. Figure 3 shows the GC trace of
product 3 upon irradiation of 1 in mode 1 microreactor.
The first of the two enantiomeric peaks on GC trace is
arbitrarily assigned to be isomer A, and the second peak
is isomer B. A was enriched to the extent of ca. 13% ee.
The ee value is small but evident, considering the diffi-
culty to achieve asymmetric induction in photochemical
transformations. In contrast, the photochemical reaction
of 1 in mode 2 microreactors shows negligible enanti-
oselectivity (Table 1, entries 5 and 6). This might arise
from the fact that ketone 1 and the molecules of chiral
inductor are located in different domains of the model 2
microreactors. The separation of the chiral inductor and
ketone would not prefer to direct the reaction toward
one of the enantiomers.
[11] Bauer, A.; Westkamper, F.; Grimme, S.; Bach, T. Nature 2005, 436,
1139.
[12] Austin, K. A. B.; Herdtweck, E.; Bach, T. Angew. Chem., Int. Ed.
2011, 50, 8416.
[13] Welton, T. Chem. Rev. 1999, 99, 2071.
Conclusions
In summary, HLCs constructed by long chain ILs
can be used as microreactors to incorporate cyclohexyl
phenyl ketone 1. Irradiation of the samples without hy-
drogen donor resulted in intramolecular hydrogen ab-
straction product exclusively. In the presence of hydro-
gen donor (such as triethylamine), however, the main
product is switched to intermolecular hydrogen abstrac-
tion one(s). The chiral model 1 microreactor made of
inherently chiral ILs induced enantioselectivity of the
intermolecular hydrogen abstraction product 3. On the
other hand, the photochemical reaction of ketone 1 in
the chiral model 2 microreactor shows no chiral induc-
tion, possibly due to the fact that the substrate and chiral
inductor molecules are located in different domains of
the HLCs. These results remind us that it is possible to
achieve enantioselectivity of photochemical reactions
using chiral ILs to form LC systems. The closer contact
between substrates and chiral inductors is, the higher
stereoselectivity will be. It is anticipated this research
line would realize asymmetric photochemical transfor-
mation, which is undergoing in our laboratory.
[14] Welton, T. Multiphase Homogeneous Catalysis, Vol. 2, Wiley,
Chichester, 2005, p. 431.
[15] Irimescu, R.; Kato, K. J. Mol. Catal. B 2004, 30, 189.
[16] Liu, W. S.; Tao, G. H.; He, L.; Kou, Y. Chin. J. Org. Chem. 2006, 26,
1031.
[17] Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.;
Rogers, R. D. Chem. Commun. 1998, 1765.
[18] Zhao, H.; Xia, S.; Ma, P. J. Chem. Technol. Biotechnol. 2005, 80,
1089.
[19] Dietz, M. L.; Stepinski, C. Green Chem. 2005, 7, 747.
[20] Li, X.-W.; Zhang, J.; Zheng, L.-Q.; Chen, B.; Wu, L.-Z.; Lv, F.-F.;
Dong, B.; Tung, C.-H. Langmuir 2009, 25, 5484.
[21] Lv, F.-F.; Chen, B.; Wu, L.-Z.; Zhang, L.-P.; Tung, C.-H. Org. Lett.
2008, 10, 3473.
[22] Lv, F.-F.; Li, X.-W.; Wu, L.-Z.; Tung, C.-H. Tetrahedron 2008, 64,
1918.
[23] Ishida, Y.; Kai, Y.; Kato, S.; Misawa, A.; Amano, S.; Matsuoka, Y.;
Saigo, K. Angew. Chem., Int. Ed. 2008, 47, 8241.
[24] Fukuhara, G.; Okazaki, T.; Lessi, M.; Nishijima, M.; Yang, C.; Mori,
T.; Mele, A.; Bellina, F.; Chiappe, C.; Inoue, Y. Org. Biomol. Chem.
2011, 9, 7105.
[25] Ishida, Y. Materials 2011, 4, 183.
[26] Li, X.-W.; Gao, Y. A.; Liu, J.; Zheng, L.-Q.; Chen, B.; Wu, L.-Z.;
Tung, C.-H. J. Colloid. Interf. Sci. 2010, 343, 94.
(Pan, B.)
606
© 2013 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2013, 31, 603—606