10.1002/ejoc.201700208
European Journal of Organic Chemistry
COMMUNICATION
1
2
3
4
5
6
7
8
9
way, for 3-carboxymethylindole-derivative 9c with the lowest
global yield (31%), the estimated yield per step was 75%.
The moderate selectivity for the syn-diastereomer in all cases
43 Keywords: free radical • cascade process • matrine • indole •
44 xanthate
can be rationalized by analysis of the plausible transition states
45 [1]
For selected recent reviews see: a) T. Rodrigues, D. Reker, P. Schneider, G.
Schneider, Nature Chem., 2016, 8, 531–541. b) H. Yuan, Q. Ma, L. Ye and G. Piao,
Molecules, 2016, 21, 559–18. c). M. E. Maier, Org. Biomol. Chem., 2015, 13,
5302–5343. d) A. L. Harvey, R. A. Edrada-Ebel, R. J. Quinn, Nat. Rev. Drug
Discov., 2015, 14, 111–129. e) M. S. Butler, A. A. B. Robertson, M. A. Cooper, Nat
Prod Rep, 2014, 31, 1612–1661.
13 and 14 (Scheme 3). The proposed transition state 13 with the
46
47
pendant heterocycle side chain in the pseudo-equatorial position
48
is more sterically congested than its counterpart transition state
14 with the heterocyclic side chain in a pseudo-axial disposition,
49
50
which would ultimately lead to the 9-syn as the mayor
51 [2]
For recent examples see: a) L. Zheng, Y. Bin, Y. Wang, R. Hua, J. Org. Chem.
2016, 81, 8911−8919; b) E. M. Woerly, J. Roy, M. D. Burke, Nature Chem. 2014, 6,
484-491; c) S. Santra, P. R. Andreana, Angew. Chem. Int. Ed. 2011, 50, 9418–
9422; d) D. Robbins, A. F. Newton, C. Gignoux, J.-C. Legeay, A. Sinclair, M. Rejzek,
C. A. Laxon, S. K. Yalamanchili, W. Lewis, M. A. O'Connell, R. A. Stockman, Chem.
Sci., 2011, 2, 2232–2235; e) D. Morton, S. Leach, C. Cordier, S. Warriner, A.
Nelson, Angew. Chem. Int. Ed. 2009, 48, 104–109. For reviews see: f) J. P. Nandy,
M. Prakesch, S. Khadem, P. T. Reddy, U. Sharma, P. Arya, Chem. Rev. 2009, 109,
1999–2060; g) K. Kumar, H. Waldmann, Angew. Chem. Int. Ed. 2009, 48, 3224 –
3242.
10 diastereomer. These results are in complete accordance with
52
11 Zard’s observation.6e
53
54
55
56
57
58
59
60
61 [3]
62
a) L. D. Miranda, E. Hernández-Vázquez, J. Org. Chem. 2015 80, 10611−10623; b)
Ma-C. García–González, E. Hernández-Vázquez, R. E. Gordillo-Cruz, L. D.
Miranda, Chem. Commun., 2015, 51, 11669-11672.
63
64 [4]
65
a). Q. Fu, Q. Fang, B. Feng, S. Sun, W. Du, E. Amut, A. Xiao, C. Chang, J.
Chromatogr. B 2011, 879, 894–900.ꢀb) Z. J. Wu, D. M. Sun, D. M. Fang, J. Z. Chen,
P. Cheng and G. L. Zhang, Int. J. Mass Spectrom., 2013, 341–342, 28–33.
a) Y. Liu, Y. Xu, W. Ji, X. Li, B. Sun, Q. Gao, C. Su, Tumor Biology, 2014, 35,
12
66
67 [5]
68
13 Scheme 3. Stereochemical rationalization.
5111–5119. b) 1
B. Zhang, Z.-Y. Liu, Y.-Y. Li, Y. Luo, M.-L. Liu, H.-Y. Dong,
69
Y.-X. Wang, Y. Liu, P.-T. Zhao, F.-G. Jin, Z.-C. Li, Eur. J. Pharm. Sci., 2011, 44,
573–579. c) L.-M. Gao, Y.-X. Han, Y.-P. Wang, Y.-H. Li, Y.-Q. Shan, X. Li, Z.-G.
Peng, C.-W. Bi, T. Zhang, N.-N. Du, J.-D. Jiang, D. Q. Song, J. Med. Chem., 2011,
54, 869–876. For a review see: d) J. Huang and H. Xu, Curr. Top. Med. Chem.,
2016, 16, 3365-3378.
14 Conclusions
70
71
We have disclosed a strategy for the rapid synthesis of ne7w2
15
73
16 polycyclic indole/pyrrole-matrine analogs 9-syn/anti via an
74 [6]
17 oxidative radical cascade coupling between simple N-allyl-
a) J. Chen, L. J. Browne, N. C. Gonnela, L. Chugaev, J. Chem. Soc. Chem.
Commun. 1986, 905-907; b) S. Okuda, M. Yoshimoto, K. Tsuda, Chem. Pharm.
Bull. 1966, 14, 275; c) L. Mandell, K. P. Singh, J. T. Gresham, W. J. Freeman, J.
Am. Chem. Soc. 1965, 87, 5234-5236. d) S. V. Watkin, N. P. Camp, R. C. D. Brown,
Org. Lett. 2013, 15, 4596-4599. e) L. Boiteau, J. Boivin, A. Liard, B. Quiclet-Sire, S.
Z. Zard, Angew. Chem. Int. Ed. 1998, 37, 1128-1131.
75
18 heterocycles 8 and readily available xanthate 7 in good
76
19 preparative yields and moderate diastereoselectivity. In the
77
20 process three new C-C bonds (including an all-carbon
78
quaternary center) and two new rings are created in a sing78le90 [7]
a) Y. M. Osornio, R. Cruz-Almanza, V. Jiménez-Montaño, L. D. Miranda, Chem.
Commun., 2003, 2316-2317; b) P. E. Reyes-Gutiérrez, R. O. Torres-Ochoa, R.
Martínez, L. D. Miranda, Org. Biomol. Chem. 2009, 7, 1388-1396; c) E. Flórez-
López, L. B. Gómez-Pérez, L: D. Miranda, Tetrahedron Lett., 2010, 51, 6000-6002.
a) For xanthate-based radical oxidative cascade processes see: a) A. Biechy, S. Z.
Zard, Org. Lett., 2009, 11, 2800–2803; b) F. Lebraux, B. Quiclet-Sire, S. Z. Zard,
Org. Lett., 2009, 11, 2844–2847; c) M. El Qacemi, L. Ricard, S. Z. Zard, Chem.
Commun., 2006, 4422–4424; d) E. Bacqué, M. El Qacemi, S. Z. Zard, Org. Lett.,
2004, 6, 3671–3674; e) F. Gagosz, S. Z. Zard, Org. Lett., 2002, 4, 4345–4348; f) Y.
M. Osornio; L. D. Miranda, Rev. Soc. Quím. Méx., 2004, 48, 288–292; g) E. W.
Tate, S. Z. Zard, Tetrahedron Lett., 2002, 43, 4683–4686.
21
22 synthetic step. Furthermore, the oxidative rearomatizing
81
23 termination step of this cascade allowed the straightforward
82
24 incorporation of the indole and pyrrole aromatic nucleus into the
83
25 matrine framework and avoid the xanthate transfer in the
84 [8]
26 product. We anticipate that these conjugated polyheterocycles
85
27 could be of interest for medicinal chemistry, as they share the
86
28 biologically active matrine-framework and resemble indole
87
29 monoterpenoid alkaloids, which are also biologically relevant.[180]8
89
30 Given the modular nature of this cascade reaction, new
90
31 polyheterocycles might be readily available by switching the
91 [9]
For reviews on xanthate-based radical chemistry, see: a) B. Quiclet-Sire, S. Z. Zard
Isr. J. Chem. 2016 doi:10.1002/ijch.201600094. b) B. Quiclet-Sire, S. Z. Zard,
Synlett, 2016, 27, 680–701. c) B. Quiclet-Sire, S. Z. Zard, Beilstein J. Org. Chem.
2013, 9, 557– 576; d) S. Z. Zard, “Xanthates and Related Derivatives as Radical
Precursors”, in Encyclopedia of Radicals in Chemistry, Biology and Materials, John
Wiley & Sons, Ltd, Chichester, UK, 2012; e) B. Quiclet-Sire, S. Z. Zard, Chem. Eur.
J. 2006, 12, 6002–6016.
32 radical acceptor partner with other suitable N-allylic heterocycles
92
33 to expeditiously populate and explore further the chemical space.
93
34
These studies are currently underway in our laboratory and w9ill4
35 be published in due course.
95
96
97
36 Acknowledgements
98 [10]
a) Q. Pan, N. R. Mustafa, K. Tang, Y. H. Choi, R. Verpoorte, Phytochemistry Rev.
2016, 15, 221-250; b) M. Ishikura, T. Abe, T. Choshi, S. Hibino, Nat. Prod.
Rep. 2013 30, 694-752; c) S. E. O’Connor, J. J. Maresh, Nat Prod Rep, 2006, 23,
532–547; d) T.-S. Kam, K.-H. Lim in The Alkaloids: Chemistry and Biology, vol. 66
(Ed.: G. A. Cordell), Academic Press, Amsterdam, 2008, pp. 1–111.
37 Financial support from DGAPA-UNAM (project PAPIIT9-9
100
38 IN210516) is gratefully acknowledged. We also thank R. Patiño,
101
39 A. Peña, E. Huerta, I. Chavez, R. Gabiño, L. Ma. C. García-
102
40 González, Velasco and J. Pérez for technical support. The
103 [11]
41 authors show gratitude to Simón Hernandez-Ortega and Alfredo
In the cases of compounds 9c, 9f and 9g, complete purification could not be
accomplished by flash cromatography, and where obtained along with a minor
amount (< 4% by 1H NMR) of an unknown impurity.
104
105
42 Toscano for X-ray crystallography.
This article is protected by copyright. All rights reserved.