98
ZAKHARCHENKO
4. Kurin, N.M. and Zakharov, M.S., Kataliz v vysshei
shkole (Catalysis in Universities), Balandin, A.A., Ed.,
Moscow: Mos. Gos. Univ., 1962, vol. 2, p. 234.
5. Zakharchenko, N.I. and Seredenko, V.V., Zh. Prikl.
Khim., 1999, vol. 72, no. 11, p. 1921.
6. Zakharchenko, N.I., Vestn. Kharkovsk. Gos. Univ.,
Khim. Nauki, 1998, no. 2, p. 86.
7. USSR Inventor’s Certificate no. 1659095, Byull. Izo-
bret., 1991, no. 24.
8. Zasorin, A.P., Zakharchenko, N.I., and Karavaev, M.M.,
Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol.,
1980, vol. 23, no. 10, p. 1274.
9. Panichkina, V.V. and Uvarova, I.V., Metody kontrolya
dispersnosti i udel’noi poverkhnosti metallicheskikh
poroshkov (Methods for the Control of Dispersity and
the Surface of Metallic Powders), Kiev: Naukova
Dumka, 1973.
10. Analiticheskii kontrol’ proizvodstva v azotnoi promy-
shlennosti (Analytical Control in Nitrogen Industry),
Demina, L.A., Ed., Moscow: Goskhimizdat, 1958, issue 8.
11. Alkhazov, T.G., Gasan-zade, G.Z., Osmanov, M.O., and
Sultanov, M.Yu., Kinet. Katal., 1975, vol. 16, no. 6,
p. 1230.
capacity depends on the rate of the chemical reaction on
the surface, which is determined by the chemical com-
position of the catalyst. The maximal capacity charac-
terizes the catalyst activity and productivity [1, 16].
Under critical conditions of the process (τ = 1.2 ×
10–3 s), the consecutive reaction of NO decomposition
via reaction (I) is not observed (Table 3), but some por-
tion of unreacted ammonia was found after the catalyst
bed; that is, ammonia breakthrough takes place
(Table 2). With an increase in the specific surface area
of the catalyst, ammonia breakthrough declines in
agreement with the higher activity of these catalysts.
The maximal breakthrough is observed for BiFeO3
(0.51%), and the minimal breakthrough is observed for
Bi2Fe4O9 (0.03%).
Thus, of all the components of the Fe2O3–Bi2O3 sys-
tem, bismuth ferrite (Bi2Fe4O9) can be recommended as
an efficient catalyst for ammonia oxidation. Bismuth
orthoferrite (BiFeO3) is insufficiently active and selec-
tive in this process. Both bismuth ferrite and hematite
are superior to the high-temperature modification of
bismuth oxide (δ-Bi2O3) in the selectivity. Also,
δ-Bi2O3 readily sublimates at T > 973 K [17] and melts 12. Sazonov, V.A., Popovskii, V.V., and Boreskov, G.K.,
Kinet. Katal., 1968, vol. 9, p. 307.
at 1093 K [18], and this fact prevents its use as a high
temperature catalyst for ammonia oxidation. Data on 13. Golodets, G.I., Geterogenno-kataliticheskie reaktsii s
uchastiem molekulyarnogo kisloroda (Heterogeneous
Catalytic Reactions Involving Molecular Oxygen), Kiev:
Naukova Dumka, 1977.
the catalytic properties of the system can be used in the
design and use of modified iron oxide catalysts for
ammonia oxidation.
14. Boreskov, G.K., Geterogennyi kataliz (Heterogeneous
Catalysis), Moscow: Nauka, 1986.
REFERENCES
1. Karavaev, M.M., Zasorin, A.P., and Kleshchev, N.F.,
15. Il’chenko, N.I., Pyatnitskii, Yu.I., and Pavlenko, N.V.,
Teor. Eksp. Khim., 1998, vol. 34, no. 5, p. 265.
Kataliticheskoe okislenie ammiaka (Catalytic Oxidation 16. Tekhnologiya katalizatorov (Technology of Catalysts),
of Ammonia), Moscow: Khimiya, 1983.
Mukhlenov, I.P., Ed., Leningrad: Khimiya, 1989.
2. Epshtein, D.A., Tkachenko, I.M., Dobrovol’skaya, N.V., 17. Gattow, G. and Schröder, H., Z. Anorg. Allg. Chem.,
et al., Dokl. Akad. Nauk SSSR, 1958, vol. 122, no. 5,
1962, vol. 318, p. 176.
p. 874.
18. Speranskaya, E.I., Skorikov, V.M., Rode, E.Ya., and
Terekhova, V.A., Izv. Akad. Nauk SSSR, Ser. Khim.,
1965, no. 5, p. 905.
3. Morozov, N.M., Luk’yanova, L.I., and Temkin, M.I.,
Kinet. Katal., 1966, vol. 7, no. 1, p. 172.
KINETICS AND CATALYSIS Vol. 43 No. 1 2002