ꢀ
Suarez et al.
6956 Inorganic Chemistry, Vol. 49, No. 15, 2010
to react with molecular oxygen, NO, and HNO itself.12 These
reactions are probably the main sinks of HNO in physiolo-
gical media.9 Given the overlap of the molecular targets and
reactivity between NO and HNO, it is very difficult to
discriminate their physiopathological role conclusively. Cy-
steine is used in some HNO/NO blocking experiments, but
discrimination of both species requires characterization of
the final products and cannot be done in situ.13,14 Clearly,
unequivocal discrimination of HNO and NO still remains
critical for interpretation of the ongoing research in this field.
As stated above, a number of studies of the HNO reactivity
have been performed with metalloporphyrin complexes, gen-
erally iron porphyrins, commonly used as heme group models.
NO is able to react fast with ferrous and also ferric porphyr-
ins, yielding the corresponding {FeNO}6/7 complexes accord-
ing to the Enermark and Feltham notation,15-17 while HNO
reacts with isolated ferric porphyrins and globins to yield
{FeNO}7 complexes.18-21 Interestingly, HNO reacts also
with ferrous myoglobin and other globins, yielding stable
{FeHNO}8 complexes.22,23 The promiscuity of iron porphy-
rins as well as the reductive nitrosylation reaction that
produces {FeNO}7 complexes from ferric porphyrins makes
them a bad choice for HNO/NO discrimination. However,
manganese(III) porphyrins suffer reductive nitrosylation
much slower than their iron(III) analogues, allowing one to
discriminateHNO from NO in solution.24 On the basis of this
data, Dobmeier et al.25 designed a Xerogel optical sensor film
for quantitative detection of HNO with an estimated dy-
namic range of 24-290 nM. However, because of the fact
that the UV-vis measurements are done in a wavelength
range in which all heme proteins strongly absorb, this method
cannot be used for most in vitro or in vivo studies. Lippard
et al. have developed a fluorescence-based system that uses a
copper(II) metallopolymer and is able to discriminate HNO
over NO, although it needs a high concentration of HNO
donor (ca. 0.3 mM).26
Although not studied as much as their iron analogues,
cobalt porphyrins also gained prominent attention for the
binding and activation of NO. The substitution of iron by
cobalt in heme proteins and synthetic porphyrins is an active
research field, with synthetic chemistry and biological per-
spectives. For example, (TPP)Co(NO) (TPP = tetraphenyl-
porphyrin) has been explored as an isoelectronic model for
oxygenated protoheme,27 and the NO adducts of cobalt-
substituted myoglobin and hemoglobin have been character-
ized by electron paramagnetic resonance and UV-vis.28,29
Several kinetic studies have been done on the NO reaction
with cobalt(II) and cobalt(III) porphyrins.1,30 The specific
association rate constants of NO with cobalt(II) porphyrins
were estimated to be kon = 2.0 ꢀ 109 M-1 s-1, while the low
value of koff = 1.5 ꢀ 10-4 M-1 s-1 shows the stability of the
CoIINO complex, which is actually better represented as a
CoIIINO- compound.30 Interestingly, the association rate of
NO with cobalt(III) porphyrins is notably smaller.30 Last, the
redox properties of the NO- (nitroxyl anion) cobalt porphy-
rin complexes (TPP)Co(NO) were also studied in organic
solvents, such as dichloromethane. Stable complexes of
[(TPP)Co(NO)]- and [(TPP)Co(NO)]þ could be obtained
at the electrode surfaces,31 and redox potentials for CoII-
( p-OCH3)TPP have been reported in several solvents.32,33
Metalloporphyrins have also been widely studied for their
use in technical applications such as gas sensors34,35 and cat-
alysts36-38 when coupled to a surface. Ordered monolayers of
porphyrins and metalloporphyrins on inert metal surfaces
have been used as convenient model systems for the study of
the reactivity and electronic structure of these devices.39-43
These types of thin-film systems have been used to study
direct metalation39,42,43 and ligand coordination reactions.41
Interestingly, a recent X-ray photoelectron spectroscopy
(XPS) study suggested direct electron transfer from a silver
surface to the Co ion from an adsorbed cobalt porphyrin,
which could be modulated by coordination of NO to the
(9) Miranda, K. M.; Paolocci, N.; Katori, T.; Thomas, D. D.; Ford, E.;
Bartberger, M. D.; Espey, M. G.; Kass, D. A.; Feelisch, M.; Fukuto, J. M.;
Wink, D. A. Proc. Natl. Acad. Sci. 2003, 100, 9196–9201.
(10) Doyle, M.; Mahapatro, S. N.; Broene, R. D.; Guy, J. K. J. Am.
Chem. Soc. 1988, 110, 593–599.
(11) Miranda, K. M.; Nims, R. W.; Thomas, D. D.; Espey, M. G.; Citrin,
D.; Bartberger, M. D.; Paolocci, N.; Fukuto, J. M.; Feelisch, M.; Wink,
D. A. J. Inorg. Biochem. 2003, 93, 52–60.
(12) Shafirovich, V.; Lymar, S. V. Proc. Natl. Acad. Sci. 2002, 99, 7340–
7345.
(13) Pino, R. Z.; Feelisch, M. Biochem. Biophys. Res. Commun. 1994, 201,
54–62.
(14) Shoeman, D. W.; Shirota, F. N.; DeMaster, E. G.; Nagasawa, H. T.
Alcohol 2000, 20, 55–59.
(15) Enemark, J. H.; Feltham, R. D. J. Am. Chem. Soc. 1974, 96, 5002–
5004.
(16) Westcott, B. L.; Enemark, J. H. Inorganic Electronic Structure and
Spectroscopy; John Wiley & Sons: New York, 1999; Vol. 2.
(17) Laverman, L. E.; Ford, P. C. J. Am. Chem. Soc. 2001, 123, 11614–
11622.
(26) Tennyson, A.; Do, L.; Smith, R.; Lippard, S. J. Polyhedron 2007, 26,
4625–4630.
(27) Scheidt, W. R.; Hoard, J. L. J. Am. Chem. Soc. 1973, 95, 8281–8288.
(28) Hori, H.; Ikeda-Saito, M.; Leigh, J. S.; Yonetani, T. Biochemistry
1982, 21, 1431–1437.
(29) Yu, N.; Thompson, H.; Mizukami, H.; Gersonde, K. Eur. J.
Biochem. 1986, 159, 129–132.
(30) Roncaroli, F.; van Eldik, R. J. Am. Chem. Soc. 2006, 128, 8042–8053.
(31) Kelly, S.; Lancon, D.; Kadish, K. M. Inorg. Chem. 1984, 23, 1451–
1458.
(32) Walker, F. A. J. Am. Chem. Soc. 1970, 92, 4235–4244.
(33) Walker, F. A.; Beroiz, D.; Kadish, K. M. J. Am. Chem. Soc. 1976, 98,
3484–3489.
(34) Guillaud, G.; Simon, J.; Germain, J. P. Coord. Chem. Rev. 1998,
178-180(2), 1433–1484.
(35) Rakow, N. A.; Suslick, K. S. Nature 2000, 406, 710–713.
(36) Mochida, I.; Suetsugu, K.; Fujitsu, H.; Takeshita, K. J. Phys. Chem.
1983, 87, 1524–1529.
(18) Bari, S. E.; Marti, M. A.; Amorebieta, V. T.; Estrin, D. A.;
Doctorovich, F. J. Am. Chem. Soc. 2003, 125, 15272–15273.
ꢀ
(19) Suarez, S. A.; Marti, M. A.; De Biase, P. M.; Estrin, D. A.; Bari, S. E.;
Doctorovich, F. Polyhedron 2007, 26, 4673–4679.
(37) Brule, E.; de Miguel, Y. R. Org. Biomol. Chem. 2006, 4, 599–609.
(38) Zampronio, E.; Gotardo, M.; Assis, M. D.; Oliveira, H. P. Catal.
Lett. 2005, 104, 53–56.
(39) Gottfried, J. M.; Flechtner, K.; Kretschmann, A.; Lukasczyk, T.;
Steinruck, H.-P. J. Am. Chem. Soc. 2006, 128, 5644–5645.
(40) Barlow, D. E.; Scudiero, L.; Hipps, K. W. Langmuir 2004, 20, 4413–
4421.
(20) Bazylinski, D. A.; Hollocher, T. C. Inorg. Chem. 1985, 24, 4285–4288.
(21) Bazylinski, D. A.; Hollocher, T. C. J. Am. Chem. Soc. 1985, 107,
7982–7986.
(22) Kumar, M. R.; Pervitsky, D.; Chen, L.; Poulos, T.; Kundu, S.;
ꢀ
Hargrove, M. S.; Rivera, E. J.; Diaz, A.; Colon, J. L.; Farmer, P. J.
Biochemistry 2009, 48, 5018–5025.
(23) Sulc, F.; Immoos, C. E.; Pervitsky, D.; Farmer, P. J. J. Am. Chem.
Soc. 2004, 126, 1096–1101.
(24) Marti, M. A.; Bari, S. E.; Estrin, D. A.; Doctorovich, F. J. Am. Chem.
Soc. 2005, 127, 4680–4684.
(41) Williams, F.; Vauhgan, O.; Knox, K. J.; Bampos, N.; Lambert, R. M.
Chem. Commun. 2004, 1688.
(42) Kretschmann, A.; Walz, M.; Flechtner, K.; Steinruck, H. P.;
Gottfried, J. M. Chem. Commun. 2007, 568.
(25) Dobmeier, K.; Riccio, D.; Schoenfisch, M. Anal. Chem. 2008, 80,
1247–1254.
(43) Auwarter, W.; Weber-Bargioni, A.; Brink, S.; Riemann, A.; Schiffrin,
A.; Ruben, M.; Barth, J. V. ChemPhysChem 2007, 8, 250–254.