8
REYES ET AL.
The rate of the reaction of para-substituted phenols
with NO2 correlated with their BDE and Hammett’s
σ parameter
Products•of the Reaction between Phenols
and NO2
•
Phenol. NO2• and, in a smaller degree phenols, are dis-
tributed among the gas and liquid phases present in the
reactor. This mimic what take place in the atmosphere
where they are distributed between the gas phase an
wet particles and/or micrometeors [26,27]. This pre-
cludes a quantitative evaluation of the kinetics of the
chemical processes. In spite of that, HPLC coupled to
MS/MS can provide an insight of the main products
produced in the nitration/oxidation of the phenols at
different stages of the reaction. In fact, the MS/MS
characterization of the obtained product of the reac-
This work was supported by FONDECYT (grants
no 1141142), DICYT (Projects Numbers 091541LG
and 041501RC) and Centers of Excellence with
Basal/CONICYT financing, Grant FB0807, CEDENNA.
BIBLIOGRAPHY
1. Wardman, P. J Radioanal Nucl Chem 1998, 232, 23–
27.
2. Augusto, O.; Bonini, M. G.; Amanso, A. M.; Linares,
E.; Santos, C. C. X.; De Menezes, S. I. Free Radical Biol
Med 2002, 32, 841–859.
3. Vione, D.; Maurino, V.; Minero, C.; Borghes, i. D.;
Lucchiari, M.; Pelizzetti, E. Environ Sci Technol 2003,
20, 4635–4641.
4. Amman, M.; Roessler, E.; Strekowski, R.; George, C.
Phys Chem Chem Phys 2003, 7, 2513–2518.
5. Stemmler, K.; Amman, M.; Donders, C.; Kleffmann, J.;
George, C. Nature 2006, 440, 195–198.
•
tion of phenol toward NO2 gave a molecular ion of
139.1, corresponding to a mono-nitrophenol deriva-
tive. The formation of such product can be attributed
to a hydrogen atom transfer from the phenol group
•
to the NO2 (Reaction (R1) [7], followed by a rear-
•
rangement and reaction with another NO2 molecule.
This initial step can involve NO2 or HONO [18]
•
but cannot be due to a NO–phenol adduct (molecular
mass 123).
para-Methoxyphenol. The main molecular product
presents a molecular mass of 168.8, which can be at-
tributed to 4-methoxy-2-nitrophenol. The mechanism
underlying the formation of this product is similar to
that above discussed for phenol.
Sinapic acid. The main reaction product in-
cludes three nitro-groups (molecular mass 358.7).
It is proposed that, following an initial hydro-
gen abstraction from the phenol group, it takes
place an addition to the lateral aliphatic chain,
6. Cooney, R. J.; Ross, P. D. J Agri Food Chem 1987, 35,
789–796.
7. Zhouen, Z.; Side, Y.; Weizhen, L.; Wenfing, W.; Niayun,
L. Free Radical Res 1998, 29, 33–36.
8. Hartshorn, M. P. Acta Chem Scand 1998, 52, 2–10.
9. Kumar, V.; Kalite, A.; Mondal, B. M. Dalton Trans 2013,
42, 16264–16267.
10. Shenghur, A.; Weber, K. H.; Nguyen, N. D.; Sontising,
W.; Fu-Ming, T. J Phys Chem A 2014, 118(46), 11002–
11014.
11. Yuan, B.; Liggio, J.; Wentzell, J.; Li, S-M.; Stark, H.;
Robert, J. M.; Gilman, J.; Lerner, B.; Warneke, C.; Li,
R.; Leithead, A.; Osthoff, H. D.; Wild, R.; Brown, S., de
Gouw, J. A. Atmos Chem Phys 2016, 16, 2139–2153.
12. Fukuto, J. M.; Carrington, S. J.; Tantillo, D. J.; Harrison,
J. G.; Ignarro, L. J.; Freeman, B. A.; Chen, A.; Wink,
D. A. Chem Res Toxicol 2012, 25, 769–793.
13. Alfassi, Z. B.; Huie, R. E.; Neta, P. J Phys Chem 1986,
90, 4156–4158.
rendering
3,4-dihydroxy-5-methoxy-3-methyl,2-
main
nitrophenyl,2,3-dinitropropanoic acid as
a
product. This reaction path emphasizes the capacity of
•
NO2 to add to activated double bonds [6,28].
CONCLUSIONS
14. Rubio, M. A.; Lissi, E.; Olivera, N.; Reyes, J. L.; Lo´pez-
Alarcon, C. Int J Chem Kinet 2014, 46,143–150.
15. Atala, E.; Velasquez, G.; Vergara, C.; Mardones, C.;
Reyes, J.; Tapia, R. A.; Quina, F.; Mendes, M.; Speisky,
H.; Lissi, E. J Phys Chem B 2013, 117, 4870–4879.
16. Hugo, E.; Reyes, J.; Montupil, E.; Bridi, R.; Lissi,
E.; Denicola, M.; Rubio, M. A.; Lopez-Alarcon, C.
Molecules 2015, 20, 10582–10593.
17. Henriquez, A.; Lissi, E. Bol Soc Chil Qu´ım 2002, 47,
563–566.
18. Vione, D.; Belmondo, S.; Carnino, L. Environ Chem
Lett 2004, 2, 135–139.
para-Substituted phenols readily react with NO2• over
a wide range of experimental conditions. The rate and
rate law of the process depend on the phenol concentra-
tion and the pH of the solution. In particular, the main
first-generation products and the pH dependence of the
•
reaction of NO2 with para-substituted phenols imply
that the mechanism of the process differs for HONO
•
and NO2 .
The rate of the process at the fixed phenol concentra-
tion (10 µM) shows a parabolic-like dependence with
the pH, with a minimum at pH ca. 5. This indicates that
low pH HONO favors the reaction, whereas at high pH
deprotonation of phenols disfavors it.
19. Koper, M. T. Chem Sci 2013, 4, 2710–2723.
20. Elias, G.; Mincher, B. J.; Mezyk, S. P.; Cullen, T. D.;
Martin, L. R. Environ Chem 2010, 7, 183–189.
International Journal of Chemical Kinetics DOI 10.1002/kin.21054