Z. Chen et al. / Journal of Catalysis 276 (2010) 56–65
65
[3] Y. Li, H. Cheng, D. Li, Y. Qin, Y. Xie, S. Wang, Chem. Commun. 12 (2008) 1470.
[4] X. Li, P. Zhu, F. Wang, L. Wang, S.C. Tsang, J. Phys. Chem. C 112 (2008) 3376.
[5] P.J. Smeets, M.H. Groothaert, R.M. Teeffelen, H. Leeman, E.J.M. Hensen, R.A.
Schoonheydt, J. Catal. 245 (2007) 358.
[6] J. Zhu, D. Xiao, J. Li, X. Yang, Y. Wu, J. Mol. Catal. A 234 (2005) 99.
[7] J.V. Durme, J. Dewulf, C. Leys, H.V. Langenhove, Appl. Catal. B 78 (2008) 324.
[8] J.L. Hueso, J. Cotrino, A. Caballero, J.P. Espinós, A.R. González-Elipe, J. Catal. 247
(2007) 288.
[9] G.L. Bauerle, S.C. Wu, K. Nobe, Ind. Eng. Chem. Prod. Res. Dev. 14 (1975) 268.
[10] V.M. Mastikhin, V.V. Terkikh, O.B. Lapina, O.B. Filimonova, M. Seial, H.
Knözinger, J. Catal. 156 (1995) 1.
[11] R. Ke, J. Li, X. Liang, J. Hao, Catal. Commun. 8 (2007) 2096.
[12] M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Appl. Catal. A 327 (2007) 261.
[13] Z. Wu, B. Jiang, Y. Liu, Appl. Catal. B 79 (2008) 347.
(2) apparent gain of electrons by Cr and loss by Mn in the quenched
samples (3) that the concentration of O2ꢁ changes little (Table 6)
after 500 h of operation and regeneration. We therefore propose
electron transfer between Cr and Mn ions. For the CrMn1.5O4 phase,
most of the Cr and Mn species are interconnected in the form of
Cr–O–Mn through oxygen bridges, facilitating electron transfer. A
redox electron transfer between different ions (from Mn3+ and
Cr5+) through the oxygen bridge (Eq. (5)) is probably similar to
the electron transfer between copper and manganese in the CuM-
n2O4 system, previously described [16,20,50]. Thus, we propose a
redox cycle for low-temperature SCR over this new type of cata-
lysts as depicted in Scheme 1.
[14] P.G. Smirniotis, D.A. Peña, B.S. Uphade, Angew. Chem. Int. Ed. 40 (2001) 2479.
[15] G. Qi, R.T. Yang, Appl. Catal. B 44 (2003) 217.
[16] M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Catal. Today 111 (2006) 236.
[17] X. Tang, Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, W. Shen, Appl. Catal. B 62 (2006)
265.
Cr5þ þ 2Mn3þ ! Cr3þ þ 2Mn4þ
ð5Þ
[18] G. Qi, R.T. Yang, Chem. Commun. 7 (2003) 848.
[19] P.M. Sreekanth, D.A. Peña, P.G. Smirniotis, Ind. Eng. Chem. Res. 45 (2006) 6444.
4. Conclusions
ˇ
[20] S. Veprek, D.L. Cocke, S. Kehl, H.R. Oswald, J. Catal. 100 (1986) 250.
[21] X.L. Tang, J.M. Hao, W.G. Xu, J.H. Li, Chin. J. Catal. 27 (2006) 843.
[22] D.A. Peña, B.S. Uphade, P.G. Smirniotis, J. Catal. 221 (2004) 421.
[23] A. Hakuli, M.E. Harlin, L.B. Backman, A.O.I. Krause, J. Catal. 184 (1999) 349.
Novel Cr–Mn mixed oxides with high activity for the low-tem-
perature SCR of NOx with ammonia in the presence of oxygen were
developed. Greater than 98.5% of NOx conversion was obtained
over the Cr(0.4)–MnOx (650) catalyst, prepared by the citric acid
´
[24] B. Grzybowska, J. Słoczynski, R. Grabowski, K. Wcisło, A. Kozłowska, J. Stoch, J.
Zielin´ ski, J. Catal. 178 (1998) 687.
[25] S. PalDey, S. Gedevanishvili, W. Zhang, F. Rasouli, Appl. Catal. B 56 (2005) 241.
[26] S. Bhatia, J. Beltramini, D.D. Do, Catal. Today 7 (1990) 309.
[27] A.Y. Kuznetsov, J.S. Almeida, L. Dubrovinsky, R. Ahuja, S.K. Kwon, I. Kantor, N.
Guignot, J. Appl. Phys. 99 (2006) 053909.
[28] D. Stanoi, G. Socol, C. Grigorescu, F. Guinneton, O. Monnereau, L. Tortet, T.
Zhang, I.N. Mihailescu, Mater. Sci. Eng. B 118 (2005) 74.
[29] H.C. Barshilia, N. Selvakumar, K.S. Rajam, J. Appl. Phys. 103 (2008) 023507.
[30] M. Ludvigsson, J. Lindgren, J. Tegenfeldt, J. Mater. Chem. 11 (2001) 1269.
[31] F. Kapteijn, A.D. Langeveld, J.A. Moulijn, A. Andreïni, M.A. Vuurman, A.M.
Turek, J. Jehng, I.E. Wachs, J. Catal. 150 (1994) 94.
[32] H.-H. Chou, H.Y. Fan, Phys. Rev. B 13 (1976) 3924.
[33] F. Buciuman, F. Patcas, R. Craciun, D.R.T. Zahn, Phys. Chem. Chem. Phys. 1
(1999) 185.
[34] H. Wan, D. Li, H. Zhu, Y. Zhang, L. Dong, Y. Hu, B. Liu, K. Sun, L. Dong, Y. Chen, J.
Colloid Interface Sci. 326 (2008) 28.
[35] S. Gómez, L.J. Garces, J. Villegas, R. Ghosh, O. Giraldo, S.L. Suib, J. Catal. 233
(2005) 60.
method at 120 °C, under flow conditions of GHSV = 30,000 hꢁ1
.
From the XRD patterns, the spinel CrMn1.5O4 was found to be pres-
ent in active Cr–Mn mixed-oxides catalysts. The TPR profiles are
revealed for the first time the reduction process of CrMn1.5O4 and
the existence of the CrMn1.5O4 phase clearly depressed the reduc-
tion temperature of manganese oxides. Raman peaks at around
539.3 and 641.7 cmꢁ1 can be assigned to the characteristic Raman
bands of the CrMn1.5O4 lattice phase, a new phase to the best of our
knowledge. Better oxidation of NO could be ascribed to the forma-
tion of CrMn1.5O4, with confirmation of electron transfer between
chromium and manganese by XPS. The addition of SO2 in the fee-
der gas could exert an adverse effect on the NOx conversion, but
does not seem to create permanent structural alteration to the
Mn species (totally reversible sulfur poisoning), presumably due
to the existence of high redox potential pairs of Cr and Mn in the
structure, permitting efficient regeneration.
[36] Y. Han, F. Chen, Z. Zhong, K. Ramesh, L. Chen, E. Widjaja, J. Phys. Chem. B 110
(2006) 24450.
[37] F. Notoya, C. Su, E. Sasako, S. Nojima, Ind. Eng. Chem. Res. 40 (2001) 3732.
[38] M. Koebel, M. Elsener, G. Madia, Ind. Eng. Chem. Res. 40 (2001) 52.
[39] R.Q. Long, R.T. Yang, J. Catal. 198 (2001) 20.
[40] R.Q. Long, R.T. Yang, J. Catal. 207 (2002) 224.
[41] B.R. Strohmeier, D.M. Hercules, J. Phys. Chem. 88 (1984) 4922.
[42] G. Qi, R.T. Yang, J. Phys. Chem. B 108 (2004) 15738.
[43] B. Liu, H. Nakatani, M. Terano, J. Mol. Catal. A 184 (2002) 387.
[44] J. Sainio, M. Eriksson, J. Lahtinen, Surf. Sci. 532–535 (2003) 396.
[45] A. Trunschke, D.L. Hoang, J. Radnik, H. Lieske, J. Catal. 191 (2000) 456.
[46] N. Russo, D. Fino, G. Saracco, V. Specchia, J. Catal. 229 (2005) 459.
[47] G. Karamullaoglu, T. Dogu, Ind. Eng. Chem. Res. 46 (2007) 7079.
[48] D.L. Hoang, S. Farage, A. Dittmar, A. Trunschke, H. Lieske, A. Martin, Catal. Lett.
112 (2006) 173.
Acknowledgment
The National Natural Science Foundation of China (20876063) is
gratefully acknowledged for the financial support of this work.
References
[49] S. Ponce, M.A. Peña, J.L.G. Fierro, Appl. Catal. B 24 (2000) 193.
[50] F.C. Buciuman, F. Patcas, T. Hahn, Chem. Eng. Process. 38 (1999) 563.
[1] H. Schneider, U. Scharf, A. Wokaun, A. Baiker, J. Catal. 147 (1994) 545.
[2] A. Tomita, T. Yoshii, S. Teranishi, M. Nagao, T. Hibino, J. Catal. 247 (2007) 137.