A Rapid Synthesis of Pyranoid Glycals Promoted by β-Cyclodextrin and Ultrasound
monitored by thin layer chromatography using silica gel
HSGF254 plates. Flash chromatography was performed
4.84 (dd, J=6.1, 3.3 Hz, 1H), 5.01 (dd, J=10.6, 3.5 Hz,
1H), 5.19 (dd, J=10.4, 8.0 Hz, 1H), 5.37 (d, J=2.6 Hz,
1H), 5.41 (dd, J=4.1, 3.9 Hz, 1H), 6.41 (d, J=6.1 Hz,
1H).
1
using silica gel HG/T2354-92. H NMR and 13C NMR
(600 and 150 MHz, respectively) spectra were recorded
1
in CDCl3. H NMR chemical shifts are reported in δ
3,4,6-Tri-O-acetyl-D-glucal (23) White power,
m.p. 50—51 ℃ (lit.14c m.p. 50—52 ℃); [α]2D5 -22
relative to tetramethylsilane (TMS), with the solvent
resonance employed as the internal standard (CDCl3,
δ=7.26). Data are reported as follows: chemical shift,
multiplicity (s=singlet, d=doublet, t=triplet, m=
multiplet), integration, and coupling constants (Hz). 13C
NMR chemical shifts are reported from tetramethylsi-
lane (TMS) with the solvent resonance as the internal
standard (CDCl3, δ=77.0). ESI-HRMS spectra were
recorded on a BioTOF Q instrument. Optical rotations
were examined on a Perkin Elmer-341 digital polarime-
ter. Glycals 2, 21—37 are known compounds and their
1H NMR data matched the literature data.14,15 D-Glucose,
D-mannose, D-galactose, D-arabinose, L-rhamnose,
D-maltose, D-lactose, and D-cellobiose were commer-
cially available and used without further purification.
Glycopyranosyl bromide 1, 3—20 were prepared ac-
cording to the reported procedure.16
1
(c 4.1, CHCl3) [lit.14c [α]D25 -22 (c 2.1, CHCl3)]; H
NMR (CDCl3) δ: 2.05 (s, 3H), 2.08 (s, 3H), 2.10 (s, 3H),
4.20 (dd, J=12.4, 3.1 Hz, 1H), 4.26 (m, 1H), 4.40 (dd,
J=12.2, 5.8 Hz, 1H), 4.85 (dd, J=9.5, 3.3 Hz, 1H),
5.22 (dd, J=7.5, 6.0 Hz, 1H), 5.35 (dd, J=4.2, 3.7 Hz,
1H), 6.47 (d, J=6.2 Hz, 1H).
3,4,6-Tri-O-acetyl-D-galactal (24)
Colorless
syrup, [α]2D5 -9 (c 0.1, EtOAc) [lit.14a [α]2D5 -17 (c
1.1, CHCl3)]; 1H NMR (CDCl3) δ: 2.03 (s, 3H), 2.09 (s,
3H), 2.13 (s, 3H), 4.22 (dd, J=11.6, 5.2 Hz, 1H), 4.28
(dd, J=11.6, 7.2 Hz, 1H), 4.32—4.33 (m, 1H), 4.72—
4.74 (m, 1H), 5.43 (dd, J=3.8, 1.1 Hz, 1H), 5.56 (d, J=
1.0 Hz, 1H), 6.46 (d, J=5.2 Hz, 1H).
3,4-Di-O-acetyl-D-arabinal (25) Colorless syrup,
[α]2D5 +200 (c 0.9, CH2Cl2) [lit.14c [α]2D5 +262 (c 0.9,
1
CHCl3)]; H NMR (CDCl3, 600 MHz) δ: 2.07 (s, 3H),
2.08 (s, 3H), 3.98 (dd, J=10.6, 9.6 Hz, 1H), 3.97—4.04
(m, 1H), 4.85 (dd, J=5.8, 5.2 Hz, 1H), 5.18—5.20 (m,
1H), 5.44 (dd, J=4.8, 4.2 Hz, 1H), 6.50 (d, J=6.0 Hz,
1H). HR-ESIMS calcd for C9H12NaO5 [M + Na]
223.0577, found 223.0564.
General procedure
β-Cyclodextrin (0.2 mmol) and zinc dust (1.5 mmol)
were added to a solution of glycopyranosyl bromide (1
mmol) in H2O (20.0 mL) under ultrasound irradiation.
TLC was used to monitor the reaction. Usual workup
and purification provided the corresponding compounds.
3,6,2',3',4',6'-Hexa-O-acetyl-α-D-maltal (2) Col-
orless syrup, [α]2D5 +169 (c 0.6, CHCl3) [lit.14a [α]2D5
+66 (c 1.0, CHCl3)]; 1H NMR (CDCl3) δ: 2.01 (s, 3H),
2.03 (s, 3H), 2.05 (s, 3H), 2.06 (s, 3H), 2.10 (s, 3H),
2.13 (s, 3H), 4.03—4.05 (m, 2H), 4.11 (dd, J=12.3, 2.0
Hz, 1H), 4.23 (dd, J=12.3, 4.1 Hz, 1H), 4.29—4.32 (m,
1H), 4.33—4.39 (m, 2H), 4.82—4.84 (m, 2H), 5.06 (dd,
J=10.0, 9.9 Hz, 1H), 5.18 (dd, J=4.2, 4.1 Hz, 1H),
5.41 (dd, J=10.0, 9.9 Hz, 1H), 5.50 (d, J=4.0 Hz, 1H),
6.44 (d, J=6.2 Hz, 1H).
3,4-Di-O-acetyl-D-xylal (26)
Colorless syrup,
[α]2D5 -301 (c 1.9, CHCl3) [lit.14c [α]2D5 -303 (c 2.3,
CHCl3)]; 1H NMR (CDCl3) δ: 2.07 (s, 3H), 2.10 (s, 3H),
3.98 (dd, J=12.3, 1.4 Hz, 1H), 4.18—4.20 (m, 1H),
4.95—4.97 (m, 2H), 5.00 (s, 1H), 6.60 (d, J=6.3 Hz,
1H).
3,4-Di-O-acetyl-L-rhamnal (27) Colorless syrup,
[α]2D5 +65 (c 1.1, CH2Cl2) [lit.14d [α]2D5 +55 (c 1.0,
1
CHCl3)]; H NMR (CDCl3) δ: 1.31 (d, J=6.6 Hz, 3H),
2.04 (s, 3H), 2.08 (s, 3H), 4.09—4.13 (m, 1H), 4.78 (dd,
J=6.2, 3.1 Hz, 1H), 5.03 (dd, J=8.2, 6.2 Hz, 1H),
5.34—5.35 (m, 1H), 6.43 (d, J=6.0 Hz, 1H).
3,6,2',3',4',6'-Hexa-O-acetyl-α-D-cellobial (21)14b
3,4-Di-O-acetyl-6-O-mesyl-D-glucal (28) Color-
less syrup, [α]2D5 -4 (c 0.3, CHCl3) [lit.15a [α]2D5
1
Colorless syrup, [α]2D5 -4 (c 0.3, CHCl3); H NMR
1
(CDCl3) δ: 2.00 (s, 3H), 2.02 (s, 3H), 2.05 (s, 3H), 2.06
(s, 3H), 2.09 (s, 3H), 2.12 (s, 3H), 3.68—3.70 (m, 1H),
3.99 (dd, J=7.4, 5.6 Hz, 1H), 4.07 (dd, J=12.3, 2.2 Hz,
1H), 4.13—4.16 (m, 1H), 4.19 (dd, J=11.9, 6.2 Hz, 1H),
4.31 (dd, J=12.4, 4.5 Hz, 1H), 4.44 (dd, J=11.7, 2.5
Hz, 1H), 4.69 (d, J=8.0 Hz, 1H), 4.82 (dd, J=6.1, 3.3
Hz, 1H), 4.98 (dd, J=9.4, 8.0 Hz, 1H), 5.09 (dd, J=
10.0, 9.4 Hz, 1H), 5.19 (dd, J=9.6, 9.4 Hz, 1H), 5.42
(m, 1H), 6.41 (d, J=6.1 Hz, 1H).
+15 (c 1.6, EtOH)]; H NMR (CDCl3) δ: 2.06 (s, 3H),
2.10 (s, 3H), 3.07 (s, 3H), 4.33—4.37 (m, 2H), 4.47 (dd,
J=11.6, 6.2 Hz, 1H), 4.89 (dd, J=6.2, 3.5 Hz, 1H),
5.21 (dd, J=7.4, 5.6 Hz, 1H), 5.34—5.36 (m, 1H), 6.48
(d, J=6.2 Hz, 1H).
3,4-Di-O-acetyl-6-O-tosyl-D-glucal (29)
White
power, m.p. 106—107 ℃ (lit.15b 106—107 ℃); [α]2D5
+16 (c 1.5, CHCl3) [lit.15b [α]D25 +14 (c 1.0, CHCl3)];
1H NMR (CDCl3) δ: 2.03 (s, 3H), 2.04 (s, 3H), 2.46 (s,
3H), 4.19—4.27 (m, 3H), 4.82 (dd, J=6.2, 3.5 Hz, 1H),
5.13 (dd, J=3.7, 3.7 Hz, 1H), 5.27 (dd, J=6.2, 5.5 Hz,
1H), 6.35 (d, J=6.0 Hz, 1H), 7.35 (d, J=7.9 Hz, 2H),
7.80 (d, J=8.4 Hz, 2H).
3,6,2',3',4',6'-Hexa-O-acetyl-α-D-lactal (22) Col-
orless syrup, [α]2D5 -9 (c 0.5, CHCl3) [lit.14a [α]2D3
-16 (c 1.4, CHCl3)]; 1H NMR (CDCl3) δ: 1.98 (s, 3H),
2.05 (s, 3H), 2.06 (s, 3H), 2.09 (s, 3H), 2.12 (s, 3H),
2.16 (s, 3H), 3.91 (dd, J=7.1, 6.4 Hz, 1H), 4.00 (dd,
J=7.4, 5.5 Hz, 1H), 4.09 (dd, J=11.2, 7.2 Hz, 1H),
4.14—4.17 (m, 2H), 4.20 (dd, J=11.8, 6.1 Hz, 1H),
4.44 (dd, J=11.7, 2.5 Hz, 1H), 4.66 (d, J=8.0 Hz, 1H),
3,4-Di-O-acetyl-6-O-mesyl-D-galactal (30) Color-
less syrup, [α]D25 -5 (c 0.4, CH2Cl2); 1H NMR (CDCl3)
δ: 2.06 (s, 3H), 2.10 (s, 3H), 3.07 (s, 3H), 4.33—4.37 (m,
2H), 4.48 (dd, J=6.0, 2.9 Hz, 1H), 4.89 (dd, J=6.0, 3.3
Chin. J. Chem. 2011, 29, 1434— 1440
© 2011 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1435