Journal of the American Chemical Society
Page 6 of 7
acquired in project ITMS 26230120002 and 26210120002
supported by the Research & Development Operational
Programme funded by the ERDF. LFP is grateful for the
support from the Slovak Research and Development Agency
(grant No. APVV-15-0105) and the Scientific Grant Agency
of the Slovak Republic (grant No. 1/0777/19). CJS
acknowledges the Australian Research Council for
equipment provided under grant LE0989336.
(12) Yahiaoui, O.; Pašteka, L. F.; Judeel, B.; Fallon, T. Synthesis
and analysis of substituted bullvalenes. Angew. Chem. Int. Ed. 2018,
7, 2570–2574.
13) (a) Achard, M.; Mosrin, M.; Tenaglia, A.; Buono, G. Cobalt(I)-
catalyzed [6+2] cycloadditions of cyclooctatetra(tri)ene with alkynes.
J. Org. Chem. 2006, 71, 2907–2910. (b) D’yakonov, V. A.; Kadikova,
G. N.; Dzhemileva, L. U.; Gazizullina, G. F.; Ramazanov, I. R.;
Dzhemilev, U. M. J. Cobalt-catalyzed [6 + 2] cycloaddition of alkynes
with 1,3,5,7-cyclooctatetraene as a key element in the direct
construction of substituted bicyclo[4.3.1]decanes. Org. Chem. 2017,
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
5
(
8
2, 471–480.
REFERENCES
(14) For reviews, see: (a) Hess, W.; Treutwein, J.; Hilt, G. Synthesis
008, 2008, 3537–3562. (b) Gandeepan, P.; Cheng, C.-H. Cobalt
2
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(1) (a) H. Hopf, Classics in Hydrocarbon Chemistry, Wiley‐VCH,
Weinheim, 2000. (b) G. A. Olah, Á. Molnár, Hydrocarbon Chemistry,
catalysis involving π components in organic synthesis. Acc. Chem. Res.
015, 48, 1194–1206. (c) Röse, P.; Hilt, G. Cobalt-catalysed bond
formation reactions; part 2. Synthesis 2016, 48, 463–492.
15) The catalytic system used in Hilt’s [4+2] cycloadditions of
alkynyl boronate esters is analogous to the catalytic system reported in
6+2] cycloadditions. For selected works by Hilt see: (a) Hilt, G.;
2
2
nd Edition, Wiley‐VCH, Weinheim, 2003.
2) von E. Doering, W.; Roth, W. R. A rapidly reversible degenerate
cope rearrangement: Bicyclo[5.1.0]octa-2,5-diene. Tetrahedron 1963,
(
(
1
9, 715–737.
[
(3) Zimmerman, H. E.; Grunewald, G. L. The chemistry of
barrelene. III. A unique photoisomerization to semibullvalene. J. Am.
Chem. Soc. 1966, 88, 183–184.
Smolko, K. I. Alkynylboronic esters as efficient dienophiles in cobalt-
catalyzed diels–alder reactions. Angew. Chemie Int. Ed. 2003, 42,
2
795–2797. (b) Hilt, G.; Lüers, S.; Smolko, K. I. A two-step reaction
sequence for the syntheses of tetrahydronaphthalenes. Org. Lett. 2005,
, 251–253. (c) Auvinet, A.-L.; Harrity, J. P. A.; Hilt, G. J. Ambient-
(4) (a) Barborak, J. C.; Daub, J.; Follweiler, D. M.; Schleyer, P. von
R. Degenerate rearrangements of the 9-barbaralyl cation. J. Am. Chem.
Soc. 1969, 91, 7760–7761. (b) Ahlberg, P.; Harris, D. L.; Winstein, S.
Direct observation of the totally degenerate 9-barbaralyl cation and the
bicyclo[4.3.0]nonatrienyl cation, a 1,4-bishomotropylium ion. J. Am.
Chem. Soc. 1970, 92, 4454–4456.
7
temperature cobalt-catalyzed cycloaddition strategies to aromatic
boronic esters. Org. Chem. 2010, 75, 3893–3896.
(16) Mono-Bpin-acetylene 6 and bis-Bpin-acetylene 7 are both
commercially available. See the SI for details on their preparation.
(17) The use of alkynyl boronate esters, in particular bis-Bpin-
acetylene 7, under these cobalt-catalysed reaction conditions was
initially capricious and required extensive optimisation. We found that
stringent purification and drying of all of the reaction components is
necessary in order to suppress proto-deborylation of the substrate (see
(5) For a recent review, see: Ferrer, S.; Echavarren, A. M. Synthesis
of bullvalenes: Classical approaches and recent developments.
Synthesis 2019, 51, 1037–1048.
(6) (a) Schröder, G. Preparation and properties of
tricyclo[3,3,2,04,6]deca-2,7,9-triene (bullvalene). Angew. Chem. Int.
Ed. Engl. 1963, 2, 481–482. (b) Schröder, G. Synthese und
eigenschaften von tricyclo[3.3.2.04.6]deca‐2.7.9‐trien (bullvalen).
Angew. Chem. 1963, 75, 722–722. (c) Schröder, G. Synthese und
I
SI for full details). Proto-deborylation of bis-Bpin-acetylene 7 in a Co
catalysed [2+2+2] cycloaddition has been reported, see: Iannazzo, L.;
Vollhardt, K. P. C.; Malacria, M.; Aubert, C.; Gandon, V.
4
.6
2.3)
eigenschaften von tricyclo[3.3.2.0 ]decatrien-(2.7.9) (bullvalen).
I
I
Alkynylboronates and ‐boramides in Co ‐ and Rh ‐catalyzed [2+2+2]
cycloadditions: Construction of oligoaryls through selective suzuki
couplings. Eur. J. Org. Chem. 2011, 2011, 3283–3292.
Chem. Ber. 1964, 97, 3140–3149.
(7) (a) Schröder, G.; Merenyi, R.; Oth, J. F. M. Moleküle mit
schneller und reversibler valenzisomerisierung.II: Synthese und
eigenschaften von brombullvalen und tert-butyl-bullvalyläther.
Tetrahedron Lett. 1964, 5, 773–777. (b) Oth, J. F. M.; Merényi, R.;
Engel, G.; Schröder, G. Synthese und nmr-spektroskopisches verhalten
zweier disubstituierter bullvalene. Tetrahedron Lett. 1966, 7, 3377–
(18) This reaction was selective for mono-condensation.
(19) Williams, J. D.; Nakano, M.; Gérardy, R.; Rincón, J. A.; de
Frutos, Ó.; Mateos, C.; Monbaliu, J.-C. M.; Kappe, C. O. Finding the
perfect match: A combined computational and experimental study
toward efficient and scalable photosensitized [2 + 2] cycloadditions in
flow. Org. Process Res. Dev. 2019, 23, 78–87.
3
382.
8) Ferrer, S.; Echavarren, A. M. Synthesis of barbaralones and
bullvalenes made easy by gold catalysis. Angew. Chem. Int. Ed. 2016,
5, 11178–11182.
9) (a) Lippert, A. R.; Keleshian, V. L.; Bode, J. W. Dynamic
(
(
20) Stille couplings of triflate substituted bullvalene have been
reported by Echavarren, see ref 8.
21) Gillis, E. P.; Burke, M. D. Iterative cross-coupling with MIDA
5
(
(
boronates: Towards a general platform for small molecule synthesis.
Aldrichimica Acta 2009, 42, 17–27.
supramolecular complexation by shapeshifting organic molecules.
Org. Biomol. Chem. 2009, 7, 1529–1532. (b) Lippert, A. R. Naganawa,
A. Keleshian, V. L. Bode, J. W. Synthesis of phototrappable shape-
shifting molecules for adaptive guest binding. J. Am. Chem. Soc. 2010,
(
22) Rebsamen, K.; Röttele, H.; Schröder, G. Mono-, di-, tri-, tetra-
penta-und hexaphenylbullvalene. Chem. Ber. 1993, 126, 1429–1433.
23) Yahiaoui, O.; Pašteka, L. F.; Blake, C. J.; Newton, C. G.;
,
(
1
32, 15790–15799. (c) He, M.; Bode, J. W. Racemization as a
Fallon, T. Network analysis of substituted bullvalenes. Org. Lett. 2019,
21, 9574–9578.
stereochemical measure of dynamics and robustness in shape-shifting
organic molecules. PNAS. 2011, 108, 14752–14756. (d) Larson, K. K.;
He, M.; Teichert, J. F.; Naganawa, A.; Bode, J. W. Chemical sensing
with shapeshifting organic molecules. Chem. Sci. 2012, 3, 1825–1828.
o
(24) Low temperature NMR measurements were made at -60 C. In
some cases, population analysis was precluded due to poor solubility
(
3, 14d), or severe signal overlap and/or restricted single bond rotation
effects (14b, 15, 21).
25) Bismillah, A. N.; Sturala, J.; Chapin, B. M.; Yufit, D. S.;
(e) He, M.; Bode, J. W. E pluribus unum: isolation, structure
determination, network analysis and DFT studies of a single metastable
structure from a shapeshifting mixture of 852 bullvalene structural
isomers. Org. Biomol. Chem. 2013, 11, 1306–1317.
(10) For recent reviews, see: (a) Rowan, S. J.; Cantrill, S. J.; Cousins,
G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Dynamic covalent chemistry.
Angew. Chem. Int. Ed. 2002, 41, 898–952. (b) Corbett, P. T.; Leclaire,
J.; Vial, L.; West, K. R.; Wietor, J.-L.; Sanders, J. K. M.; Otto, S.
Dynamic combinatorial chemistry. Chem. Rev. 2006, 106, 3652–3711.
(c) Jin, Y.; Yu, C.; Denman, R. J.; Zhang, W. Recent advances in
dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42, 6634–6654.
(
Hodgkinson, P.; McGonigal, P. R. Shape-selective crystallisation of
fluxional carbon cages. Chem. Sci. 2018, 9, 8631–8636.
(
26) Echavarren reported the single X-ray crystal structure of 13a
CCDC 1487024), see ref 8.
27) Martinez, C. R.; Iverson, B. L. Rethinking the term “pi-
stacking”. Chem. Sci. 2012, 3, 2191–2201.
28) For Echavarren’s crystal structure of 14a (CCDC 1487025), see
ref 8.
(
(
(
(29) (a) Spackman, M.A.; McKinnon, J.J. Fingerprinting
(11) Teichert, J. F.; Mazunin, D.; Bode, J. W. Chemical sensing of
intermolecular interactions in molecular crystals. CrystEngComm
polyols with shapeshifting boronic acids as a self-contained sensor
array. J. Am. Chem. Soc. 2013, 135, 11314–11321.
ACS Paragon Plus Environment