2762
S. R. Mellegaard-Waetzig et al.
LETTER
(3) (a) Lou, S.; Westbrook, J. A.; Schaus, S. E. J. Am. Chem.
Soc. 2004, 126, 11440. (b) Shim, J.-G.; Nakamura, H.;
Yamamoto, Y. J. Org. Chem. 1998, 63, 8470. (c) Nokami,
J.; Mandai, T.; Watanabe, H.; Ohyama, H.; Tsuji, J. J. Am.
Chem. Soc. 1989, 111, 4126.
ylative allylic amination provides different selectivities
than standard allylic amination, which may prove to be
beneficial for the synthesis of hindered heteroaromatic
amines.
(4) (a) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004,
126, 15044. (b) Trost, B. M.; Xu, J. J. Am. Chem. Soc. 2005,
127, 2846.
(5) (a) Guibe, F.; M’Leux, Y. S. Tetrahedron Lett. 1981, 22,
3591. (b) Bäckvall, J. E.; Nordberg, R. E.; Vaberg, J.
Tetrahedron Lett. 1983, 24, 411. (c) Larock, R. C.; Lee, N.
H. Tetrahedron Lett. 1991, 32, 6315. (d) Shim, J.-G.;
Yamamoto, Y. J. Org. Chem. 1998, 63, 3067.
CH3
O
N
N
5 mol%
Pd(PPh3)4
CH3
O
N
N
N
N
+
CD2Cl2
45 min
57%
CH3
1v
2v
2w
(6) Decarboxylative allylic amination starting with allylic
carbamates has been reported using stoichiometric
BF3·OEt2: Wang, C.-L. J.; Calabrese, J. C. J. Org. Chem.
1991, 56, 4341.
(7) The reverse reaction involving the coupling of amines, CO2,
and allyl halides to form allylic carbamates has been
reported: McGhee, W. D.; Riley, D. P.; Christ, M. E.; Christ,
K. M. Organometallics 1993, 12, 1429.
(8) (a) Synerholm, M. E.; Gilman, N. W.; Morgan, J. W.; Hill,
R. K. J. Org. Chem. 1968, 33, 1111. (b) Katritzky, A. R.;
Zhang, G.-F.; Fan, W.-Q.; Wu, J.; Pernak, J. J. Phys. Org.
Chem. 1993, 6, 567.
(9) (a) Cook, G. R.; Yu, H.; Sankaranarayanan, S.; Shanker, P.
S. J. Am. Chem. Soc. 2003, 125, 5115. (b) Cook, G. R.;
Shanker, P. S.; Pararajasingham, K. Angew. Chem. Int. Ed.
1999, 38, 110. (c) Jeffrey, P. D.; McCombie, S. W. J. Org.
Chem. 1982, 47, 587.
(10) Knight, J. G.; Ainge, S. W.; Harm, A. M.; Harwood, S. J.;
Maughan, H. I.; Armour, D. R.; Hollinshead, D. M.; Jaxa-
Chamiec, A. A. J. Am. Chem. Soc. 2000, 122, 2944.
(11) Tsuji, J.; Minami, I.; Shimizu, I. Chem. Lett. 1984, 1721.
(12) Our attempts to utilize Ni(0) catalysts for decarboxylative
allylation yielded mainly 1,5-dienes via allyl
homodimerization.
(13) Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.-a.; Watanabe,
Y. Organometallics 1995, 14, 1945.
Scheme 6
In conclusion, we have developed a catalytic synthesis of
allylic amines via decarboxylation of allylic carbamates.
This method is particularly well-suited for the decarbox-
ylative coupling of heteroaromatic amines with allyl elec-
trophiles. The allylation of heteroaromatic amines follows
a mechanism where decarboxylation preceeds alkylation.
This unique reaction feature may be responsible for pro-
ducing selectivities that are different from those observed
for amination of allylic acetate derivatives.
General Procedure for Decarboxylative Allylation of Saturated
Amines
To a dry, air-free 25-mL Schlenk flask was added Pd(PPh3)4 (0.05
mmol). The flask was then charged with substrate 1 (0.50 mmol)
and dry CH2Cl2 (2.0 mL). This solution was heated to 40 °C and al-
lowed to stir for 1–4 h. After cooling the solution to r.t., the mixture
was filtered through a short Celite and silica gel pad and washed
with CH2Cl2 (3 × 5 mL). The filtrate was concentrated and the resi-
due was purified on a silica gel column using hexane–EtOAc
(15:85) as eluent.
(14) Bergbreiter, D. E.; Weatherford, D. A. J. Org. Chem. 1989,
54, 2726.
General Procedure for Decarboxylative Allylation of Hetero-
aromatic Amines
(15) Katritzky, A. R.; Pozharskii, A. F. Handbook of
Heterocyclic Chemistry, 2nd ed.; Pergamon: Oxford, 2002.
(16) For leading examples of the allylation of heteroaromatic
amines see: (a) Trost, B. M.; Kuo, G.-H.; Benneche, T. J.
Am. Chem. Soc. 1988, 110, 621. (b) Arredondo, Y.;
Moreno-Mañas, M.; Pleixats, R.; Villarroya, M.
Tetrahedron 1993, 49, 1465. (c) Arnau, N.; Arredondo, Y.;
Moreno-Mañas, M.; Pleixats, R.; Villarroya, M. J.
Heterocycl. Chem. 1995, 32, 1325. (d) Trost, B. M.;
Krische, M. J.; Berl, V.; Grenzer, E. M. Org. Lett. 2002, 4,
2005. (e) Konkel, M. J.; Vince, R. J. Org. Chem. 1996, 61,
6199.
To a dry, air-free 25-mL Schlenk flask was added substrate (0.780
mmol), Pd(PPh3)4 (0.039 mmol, 5 mol%), and dry CH2Cl2 (5 mL).
The resulting colorless solution was allowed to stir at r.t. for 1–12
h. Reaction completion was generally indicated by a change in color
to bright yellow. The solution was then concentrated and directly
purified by flash column chromatography using hexane–EtOAc
(90:10) as the eluent. The imidazole-containing products were
triturated with hexane and filtered prior to chromatography.
Acknowledgment
(17) (a) Johannsen, M.; Jorgensen, K. A. Chem. Rev. 1998, 98,
1689. (b) Watson, I. D. G.; Styler, S. A.; Yudin, A. K. J. Am.
Chem. Soc. 2004, 126, 5086. (c) Ohmura, T.; Hartwig, J. F.
J. Am. Chem. Soc. 2002, 124, 15164. (d) Feuerstein, M.;
Laurenti, D.; Doucet, H.; Santelli, M. Chem. Commun. 2001,
43.
(18) (a) Katritzky, A. R.; Wang, X.; Denisenko, A. J. Org. Chem.
2001, 66, 2850. (b) Katritzky, A. R.; Qi, M. J. Org. Chem.
1997, 62, 4116. (c) Le, Z.-G.; Chen, Z.-C.; Hu, Y.; Zheng,
Q.-G. Heterocycles 2004, 63, 1077. (d) Mashraqui, S. H.;
Kumar, S. M.; Chandrasekhar, D. Bull Chem. Soc. Jpn.
2001, 74, 2133.
We thank the Petroleum Research Fund (39562-G1) for partial
support of this work.
References
(1) (a) Tsuda, T.; Chujo, Y.; Nishi, S.-I.; Tawara, K.; Saegusa,
T. J. Am. Chem. Soc. 1980, 102, 6381. (b) Shimizu, I.;
Yamada, T.; Tsuji, J. Tetrahedron Lett. 1980, 21, 3199.
(2) (a) Burger, E. C.; Tunge, J. A. Org. Lett. 2004, 6, 2603.
(b) Burger, E. C.; Tunge, J. A. Org. Lett. 2004, 6, 4113.
(c) Burger, E. C.; Tunge, J. A. Chem. Commun. 2005, 2835.
(d) Burger, E. C.; Tunge, J. A. Eur. J. Org. Chem. 2005,
1715.
(19) For the pKa in DMSO, see: Bordwell, F. G.; Drucker, G. E.;
Fried, H. E. J. Org. Chem. 1981, 46, 632.
Synlett 2005, No. 18, 2759–2762 © Thieme Stuttgart · New York