A. L. Braga et al. / Tetrahedron: Asymmetry 17 (2006) 2793–2797
2797
4
.2.5. (R)-Methyl 2,2-dibutylthiazolidine-4-carboxylate 2g.
Professor L. A. Wessjohann, Dr. J. Schmidt (IPB,
Germany) for HPLC and HRMS analysis.
1
Yield: 87%; H NMR (CDCl , 200 MHz): d = 4.02 (m,
3
1
2
1
1
1
1
3
H); 3.77 (s, 3H); 3.30 (dd, J = 10.2 Hz, J = 6.6 Hz,
H); 2.88–2.79 (m, 1H); 2.40 (s, 1H); 1.91–1.70 (m, 4H);
1
3
.51–1.31 (m, 8H); 0.96–0.89 (m, 6H). C NMR (CDCl3,
00 MHz): d = 171.74; 83.42; 63.89; 51.91; 41.58; 39.20;
8.41; 27.51; 27.10; 22.67; 22.63; 13.66; 13.59.
References
1. (a) Meguro, K.; Aizawa, M.; Sohda, T.; Kawamatsu, Y.;
Nagaoka, A. Chem. Pharm. Bull. 1985, 33, 3787; (b) Toda, F.;
Tanaka, K.; Koshiro, K. Tetrahedron: Asymmetry 1991, 2,
873; (c) Botta, M.; Summa, V.; Corelli, F.; Pietro, G. D.;
Lombardi, P. Tetrahedron: Asymmetry 1996, 7, 1263; (d)
Bolshan, Y.; Chen, C.-y.; Chilenski, J. R.; Gosselin, F.;
Mathre, D. J.; O’Shea, P. D.; Roy, A.; Tillyer, R. D. Org.
Lett. 2004, 6, 111.
4
2
.2.6. (R)-Isopropyl 2,2-dibutylthiazolidine-4-carboxylate
1
h. Yield: 71%; H NMR (CDCl , 200 MHz): d = 5.09
3
1
(
sept, J = 6.2 Hz, 1H); 3.98 (dd, J = 7.36 Hz,
2
1
2
J = 6.7 Hz, 1H); 3.30 (dd, J = 10.3 Hz, J = 6.7 Hz,
1
1
H); 2.86–2.76 (m, 2H); 1.91–1.67 (m, 4H); 1.51–1.25 (m,
1
3
4H); 0.96–0.90 (m, 6H). C NMR (CDCl , 100 MHz):
3
2. Bolm, C.; Hermanns, N.; Hildebrand, J. P.; Mu n˜ iz, K.
Angew. Chem., Int. Ed. 2001, 40, 3284.
d = 171.13; 83.84; 68.90; 64.36; 41.85; 39.36; 38.73; 27.69;
2
7.29; 22.86; 22.83; 21.56; 21.52; 13.86; 13.79.
3. (a) Zhao, G.; Li, X.-G.; Wang, X.-R. Tetrahedron: Asymme-
try 2001, 12, 399; (b) Bolm, C.; Mu n˜ iz, K. Chem. Commun.
1
1
1
999, 1295; (c) Dosa, P. I.; Fu, G. C. J. Am. Chem. Soc. 1998,
20, 445; (d) Dosa, P. I.; Ruble, J. C.; Fu, G. C. J. Org. Chem.
997, 62, 444.
4
.3. General procedure for the synthesis of compounds 2i
The same procedure was used for the synthesis of com-
pounds 2c–h. Yield: 96%; H NMR (CDCl , 200 MHz):
d = 7.42–7.20 (m, 10H); 5.76 (s, 1H ); 5.51 (s, 1Htrans);
1
4. (a) Qin, Y.-C.; Pu, L. Angew. Chem., Int. Ed. 2006, 45, 273;
b) Pizzuti, M. G.; Superchi, S. Tetrahedron: Asymmetry
005, 16, 2263; (c) Bolm, C.; Schmidt, F.; Zani, L. Tetra-
3
(
2
cis
4
.19–4.12 (m, 1H ); 3.97–3.89 (m, 1H
); 3.70 (2s, 6H,
C NMR (CDCl3,
cis
trans
3
hedron: Asymmetry 2005, 16, 1367; (d) Fontes, M.; Verda-
guer, X.; Sol a` , L.; Peric a´ s, M. A.; Riera, A. J. Org. Chem.
2004, 69, 2532; (e) Ko, D.-H.; Kim, K. H.; Ha, D.-C. Org.
Lett. 2002, 4, 3759; (f) Bolm, C.; Hermanns, N.; Claßen, A.;
Mu n˜ iz, K. Bioorg. Med. Chem. Lett. 2002, 2, 1795; (g) Bolm,
C.; Kesselgruber, M.; Grenz, A.; Hermanns, N.; Hildebrand,
J. P. New J. Chem. 2001, 25, 13; (h) Huang, W. S.; Pu, L.
Tetrahedron Lett. 2000, 41, 145; (i) Huang, W.-S.; Pu, L. J.
Org. Chem. 1999, 64, 4222.
1
OCH3 cis and trans); 3.43–3.01 (m, 4H).
1
1
5
00 MHz): d = 171.54; 170.95; 140.70; 137.74; 128.05;
27.79; 127.24; 126.88; 126.41; 71.89; 70.31; 64.86; 63.78;
1.89; 51.80; 38.49; 37.51.
4
.4. General procedure for the synthesis of compounds 4
The same procedure was used for the synthesis of com-
pounds 2c–h. Yield: 57%; H NMR (CDCl , 200 MHz):
d = 5.10 (sept, J = 6.2 Hz, 1H); 3.80 (s, 1H); 3.03 (s, 1H);
1
5
6
. Bolm, C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124,
1
1
3
4850.
. (a) Bolm, C.; Rudolph, J.; Schmidt, F. Synthesis 2005, 5, 840;
.85–1.74 (m, 4H); 1.60 (s, 3H); 1.31–1.26 (m, 14H); 1.21
¨
b) Bolm, C.; Oz c¸ ubuk c¸ u, S.; Schmidt, F. Org. Lett. 2005, 7,
(
1
3
(
s, 3H); 0.95–0.90 (m, 6H). C NMR (CDCl , 100 MHz):
1407; (c) Bolm, C.; Rudolph, J.; Hermanns, N. J. Org. Chem.
2004, 69, 3997; (d) Schmidt, F.; Stemmler, R. T.; Rudolph, J.;
Bolm, C. Chem. Soc. Rev. 2006, 35, 454; (e) Kim, J. G.;
Walsh, P. J. Angew. Chem., Int. Ed. 2006, 45, 4175.
3
d = 169.36; 80.48; 72.55; 68.89; 58.87; 42.67; 40.82; 28.86;
2
7.90; 27.86; 27.34; 23.04; 23.00; 21.91; 21.86; 14.03; 13.96.
7
. (a) Braga, A. L.; L u¨ dtke, D. S.; Vargas, F.; Paix a˜ o, M. W.
Chem. Commun. 2005, 2512; (b) Braga, A. L.; L u¨ dtke, D. S.;
Vargas, F.; Schneider, P. H.; Paix a˜ o, M. W.; Schneider, A.;
Wessjohann, L. A. Tetrahedron Lett. 2005, 46, 7827; (c)
Braga, A. L.; Silva, S. J. N.; L u¨ dtke, D. S.; Drekener, R. L.;
Silveira, C. C.; Rocha, J. B. T.; Wessjohann, L. A. Tetra-
hedron Lett. 2002, 43, 7329.
4.5. General procedure for asymmetric aryl transfer
reactions
Diethylzinc (3.6 mmol, toluene solution) was added drop-
wise to a solution of boronic acid (1.2 mmol) in toluene
(
1
(
2 mL) under an argon atmosphere. After stirring for
2 h at 60 ꢁC, a toluene solution of chiral thiazolidine 2i
20 mol %) was introduced. The reaction was stirred for
8. Wu, P.-Y.; Wu, H.-L.; Uang, B.-J. J. Org. Chem. 2006, 71,
833.
an additional 15 min and the aldehyde (0.5 mmol) was sub-
sequently added. After stirring overnight, the reaction was
quenched with water and the aqueous layer was extracted
with dichloromethane.
9. (a) Guan, Y.; Meng, Q.; Li, Y.; He, Y. Tetrahedron:
Asymmetry 2000, 11, 4255; (b) Jin, M. J.; Kim, S. H. Bull.
Korean Chem. Soc. 2002, 23, 509.
1
0. The diastereomeric ratio was be determined by the intensity
1
ratio of two singlets for the C2 proton in the H NMR
spectrum, which is attributed to two diastereomers.
1
1
1. Brunner, H.; Becker, R.; Riepl, G. Organometallics 1984, 3,
Acknowledgements
1
354.
2. (a) Rudolph, J.; Rasmussen, T.; Bolm, C.; Norrby, P.-O.
Angew. Chem., Int. Ed. 2004, 42, 3002; (b) Rudolph, J.; Bolm,
C.; Norrby, P.-O. J. Am. Chem. Soc. 2005, 127, 1548.
The authors gratefully acknowledge CAPES, CNPq, and
FAPERGS for financial support. We are also grateful to