Application of â-Hydroxysulfoximines in Catalytic Asymmetric
Phenyl Transfer Reactions for the Synthesis of Diarylmethanols
Jo¨rg Sedelmeier and Carsten Bolm*
Institute of Organic Chemistry, RWTH Aachen UniVersity, Landoltweg 1, D-52056 Aachen, Germany
ReceiVed July 31, 2007
Enantiomerically enriched diarylmethanols have been prepared by catalyzed asymmetric phenyl transfer
reactions onto aromatic aldehydes with use of readily available â-hydroxysulfoximines as catalysts. As
the aryl source, combinations of diethylzinc with either diphenylzinc or triphenylborane have been applied
affording arylphenylmethanols with up to 93% ee in good yields. Various functionalized aldehydes and
heterocyclic substrates are tolerated, yielding synthetically relevant products.
Introduction
During the past decades, sulfoximines have attracted signifi-
cant attention due to their successful use as chiral auxiliaries in
asymmetric synthesis5 and ligands in enantioselective metal
catalysis.6 Their preparation is well-documented and several
synthetic routes have been established. On the basis of our
previous experience in addition reactions with dialkylzincs,7 we
decided to test the applicability of easily accessible â-hydroxy-
sulfoximines 2 in asymmetric phenyl transfer reactions. Sul-
Enantiopure diarylmethanols are important intermediates for
the synthesis of biologically active compounds, which show
physiologically interesting properties such as antihistaminic,
antiarrhythmic, diuretic, antidepressive, laxative, local-anes-
thetic, and anticholinergic effects.1 Previous approaches toward
enantiomerically enriched diarylmethanols involved asymmetric
reductions of prochiral ketones or aryl transfer reactions onto
aldehydes.2 Our group3 as well as several others4 have developed
various protocols for the latter transformation utilizing mixtures
of diethylzinc with either diphenylzinc, triphenylborane, or
boronic acids as aryl sources. Often, both yields and enantio-
selectivities are high. However, despite the immense progress
in this area, there is still a need for improvement. For example,
many catalysts are too complex to be applied on large scale
and furthermore, functionalized substrates often lead to only
moderate enantioselectivies.
(4) (a) Dosa, P. I.; Ruble, J. C.; Fu, G. C. J. Org. Chem. 1997, 62, 444.
(b) Huang, W.-S.; Pu, L. J. Org. Chem. 1999, 64, 4222. (c) Zhao, G.; Li,
X. G.; Wang, X. R. Tetrahedron: Asymmetry 2001, 12, 399. (d) Fontes,
M.; Verdaguer, X.; Sola, L.; Perica`s, M. A.; Riera, A. J. Org. Chem. 2004,
69, 2532. (e) Ko, D.-H.; Kim, K. H.; Ha, D.-C. Org. Lett. 2002, 4, 3759.
(f) Pizzuti, M. G.; Superchi, S. Tetrahedron: Asymmetry 2005, 16, 2263.
(g) Qin, Y.-C.; Pu, L. Angew. Chem., Int. Ed. 2006, 45, 273. (h) Ji, J.-X.;
Wu, J.; Au-Yeung, T. T.-L.; Yip, C.-W.; Haynes, R. K.; Chan, A. S. C. J.
Org. Chem. 2005, 70, 1093. (i) Hatano, M.; Miyamoto, T.; Ishihara, K.
AdV. Synth. Catal. 2005, 347, 1561. (j) Kim, J. G.; Walsh, P. J. Angew.
Chem., Int. Ed. 2006, 45, 4175.
(5) For reviews on sulfoximines and their use as chiral auxiliaries, see:
(a) Johnson, C. R. Acc. Chem. Res. 1973, 6, 341. (b) Pyne, S. Sulfur Rep.
1992, 12, 57. (c) Reggelin, M.; Zur, C. Synthesis 2000, 1.
(6) For reviews on sulfoximines and their use as chiral ligands in metal
catalysis, see: (a) Harmata, M. Chemtracts 2003, 16, 660. (b) Okamura,
H.; Bolm, C. Chem. Lett. 2004, 32, 482. (c) For a personel account, see:
Bolm, C. In Asymmetric Synthesis with Chemical and Biological Methods;
Enders, D., Ja¨ger, K.-E., Eds.; Wiley-VCH: Weinheim, Germany, 2007; p
149.
(1) (a) Harms, A. F.; Hespe, W.; Nauta, W. T.; Rekker, R. F. Drug Design
1976, 6, 1. (b) Rekker, R. F.; Timmerman, H.; Harms, A. F.; Nauta, W. T.
Arzneim. Forsch. 1971, 21, 688. (c) Bolshan, Y.; Chen, C. Y.; Chilenski,
J. R.; Gosselin, F.; Mathre, D. J.; O’ Shea, P. D.; Tillyer, A. R. Org. Lett.
2004, 6, 111. (d) Magnus, N. A.; Anzeveno, P. B.; Coffey, S. S.; Hay, D.
A.; Laurila, M. E.; Schkeryantz, J. M.; Shaw, B. W.; Staszak, M. A. Org.
Process Res. DeV. 2007, 11, 560. (e) Truppo, M. D.; Pollard, D.; Devine,
P. Org. Lett. 2007, 9, 335 and references cited therein.
(2) For a recent review, see: Schmidt, F.; Stemmler, R. T.; Rudolph, J.;
Bolm, C. Chem. Soc. ReV. 2006, 35, 454.
(7) (a) Bolm, C.; Mu¨ller, J.; Schlingloff, G.; Zehnder, M.; Neuburger,
M. J. Chem. Soc., Chem. Commun. 1993, 182. (b) Bolm, C.; Mu¨ller, J.
Tetrahedron 1994, 50, 4355. (c) See also: Bolm, C.; Felder, M.; Mu¨ller, J.
Synlett 1992, 439. For general overviews on catalyzed asymmetric reactions
with organozinc reagents, see: (d) Soai, K.; Niwa, S. Chem. ReV. 1992,
92, 833. (e) Soai, K.; Shibata, T. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, Germany,
1999; p 911. (f) Pu, L.; Yu, H.-B. Chem. ReV. 2001, 101, 757.
(3) For selected references from our laboratories, see: (a) Bolm, C.;
Hermanns, N.; Hildebrand, J. P.; Mun˜iz, K. Angew. Chem., Int. Ed. 2000,
39, 3465. (b) Rudolph, J.; Schmidt, F.; Bolm, C. AdV. Synth. Catal. 2004,
346, 867. (c) Rudolph, J.; Bolm, C. J. Am. Chem. Soc. 2002, 124, 14850.
(d) Schmidt, F.; Rudolph, J.; Bolm, C. AdV. Synth. Catal. 2007, 349, 703.
(e) Rudolph, J.; Hermanns, N.; Bolm, C. J. Org. Chem. 2004, 69, 3997.
10.1021/jo7016718 CCC: $37.00 © 2007 American Chemical Society
Published on Web 10/11/2007
J. Org. Chem. 2007, 72, 8859-8862
8859