2490
K. Okrasa et al. / Tetrahedron: Asymmetry 14 (2003) 2487–2490
2. Preparation of 1-butyl-3-methyl imidazolium
hexafluorophosphate ([BMIM]PF6)
References
1. Ionic Liquids in Synthesis; Wasserscheid, P.; Welton, T.,
Eds.; Wiley: Weinheim, 2003
2. Sheldon, R. A. Chem. Commun. 2001, 2399–2407.
3. Welton, T. Chem. Rev. 1999, 99, 2071–2083.
4. Wasserscheid, P; Keim, W. Angew. Chem., Int. Ed. 2000,
39, 3772–3789.
5. Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasun-
daram, K.; Gratzel, M. Inorg. Chem. 1996, 35, 1168–
1178.
6. Carmichael, A. J.; Seddon, K. R. J. Phys. Org. Chem.
2000, 13, 591–595.
1-Butyl-3-methyl imidazolium bromide ([BMIM]Br) ( 0.4
mol) was added to a suspension of NaPF6 (0.44 mol) in
acetone (200 ml). The mixture was stirred 30 h at room
temperature. The precipitate of sodium bromide was
removed and the filtrate was concentrated under vacuum.
The residue was dissolved in ethyl acetate (200 ml) and
washed a few times with sodium bicarbonate and then
with water. The organic solution was dried over anhy-
drous sodium sulfate and ethyl acetate was removed
under vacuum, to yield a pale yellow oil of 1-butyl-3-
methyl imidazolium hexafluorophosphate ( yield 85%).
7. Aki, S. N. V. K; Brennecke, J. F.; Samanta, A. Chem.
Commun. 2001, 413–414.
8. Muldoon, M. J.; Gordon, C. M.; Dunkin, I. R. J. Chem.
Soc., Perkin Trans. 2 2001, 433–435.
3. Typical procedure for oxidation of sulfides
9. Kim, K.-W.; Song, B.; Choi, M.-Y.; Kim, M.-J. Org.
Lett. 2001, 3, 1507–1509.
10. Madeira Lau, R.; van Rantwijk, F.; Seddon, K. R.;
Sheldon, R. A. Org. Lett. 2000, 2, 4189–4191.
11. Schofer, S. H; Kaftzik, N.; Kragl, U.; Wasserscheid, P.
Chem. Commun. 2001, 425–426.
12. Laszlo, J. A.; Compton, D. L. J. Mol. Catal. B: Enzym.
2002, 18, 109–120.
13. Hinckley, G.; Mozhaev, V. V.; Budde, C; Khmelnitsky,
Y. L. Biotechnol. Lett. 2002, 24, 2083–2087.
14. van Rantwijk, F.; Lau, R. M.; Sheldon, R. A. Trends
Biotechnol. 2003, 21, 131–138.
15. Gaillon, L.; Bedioui, F. Chem. Commun. 2001, 1458–
1459.
16. Wasserscheid, P.; Gordon, C. M.; Hilgers, C.; Muldoon,
M. J.; Dunkin, I. R. Chem. Commun. 2001, 1186–1187.
17. Okrasa, K.; Guibe-Jampel, E.; Therisod, M. J. Chem.
Soc., Perkin Trans. 1 2000, 1077–1079.
18. van de Velde, F.; Lourenco, N. D.; Bakker, M.; van
Rantwijk, F.; Sheldon, R. A. Biotechnol. Bioeng. 2000,
69, 286–291.
Enzymes: fungal peroxidase from Coprinus cinereus (EC
1.11.1.7; specific activity: 231 kU/ml) having broad pH
optimum (5–9) and glucose oxidase (EC 1.1.3.4; specific
activity: 1.2 U/mg) from Aspergilius niger with pH
optimum 5.5–7. Both enzymes were supplied by
Novozymes.
The sulfide (0.3 mmol) and glucose (0.6 mmol) were
dissolved in a mixture of 3 ml [BMIM]PF6 and 0.3 ml
(16.6 mmol) of water containing 3 mg of glucose oxidase
and 48 mg (1 mol) of peroxidase (previously dialyzed
against 0.5 M NaCl and then lyophilized). The mixture
was stirred mechanically at room temperature; 16 mg of
sodium bicarbonate, were added every 8 hours. After 32
h the formed sulfoxide was extracted with diethyl ether.
The enantiomeric excess was determinated by HPLC on
a Chiracel OD-H column (flow: 0.75 ml/min, solvent:
iso-hexane/propan-2-ol 95:5). The degree of conversion
and chemical purity of sulfoxides was determinated by
GC and NMR.
19. Dai, L.; Klibanov, A. M. Biotechnol. Bioeng. 2000, 70,
353–357.
4. Conclusions
20. Kazandjian, R. Z.; Dordick, J. S.; Klibanov, A. M.
Biotechnol. Bioeng. 1986, 28, 417–421.
The devised oxidation of thioanisoles in ionic liquid by
GOD/Cip leads to sulfoxides with a stereoselectivity
similar to that obtained in water. All substrates of
enzymes and their products: glucose, gluconic acid,
sulfides and sulfoxides are perfectly soluble in IL. Thus,
the reaction in IL is particularly interesting for water
insoluble products (for example methyl-2-naphthyl
sulfide oxidized with ee=92%). The mixture of IL
containing GOD and Cip can be quantitatively recycled
and reused. Isolation of obtained sulfoxide is easier than
from water, where proteins induce formation of emulsion
with organic solvent. Moreover, the easy recovery of
ionic liquid is environmentally interesting. These obser-
vations indicate that IL are suitable media for biocata-
lytic oxidations.
21. Ansari, I. A.; Gree, R. Org. Lett. 2002, 4, 1507–1509.
22. Cip was employed in water for selective sulfoxidation: (a)
Tuynman, A.; Vink, M. K. S.; Dekker, H. L.; Schoe-
maker, H. E. Wever R. Eur. J. Biochem. 1998, 256,
906–913; (b) Adam, W.; Mock-Knoblanch, C.; Saha-
Moller, Ch. R. J. Org. Chem. 1999, 64, 4834–4839; and
epoxidation: (c) Tuynman, A.; Luftje-Spelberg, J.;
Kooter, I. M.; Schoemaker, H. E.; Wever, R. J. Biol.
Chem. 2000, 275, 3025–3030
23. Kazlauskas, R. J; Park, S. J. Org. Chem. 2001, 66,
8395–8401.
24. Bell, G.; Halling, P. J.; Moore, B. D.; Partridge, J.; Rees,
D. G. Trends. Biotechnol. 1995, 13, 468–473.
25. Eckstein, M.; Sesing, M.; Kragle, U.; Adlercreutz, P.
Biotechnol. Lett. 2002, 24, 867–872.
26. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.;
Smith, F. Anal. Chem. 1956, 28, 350–356.
Acknowledgements
27. Before washing with water [BMIM]PF6 should be dis-
solved in ethyl acetate to facilitate this process.
We are grateful to Dr Schneider and Novozymes for the
supply of Cip and GOD.