Ö. Alver et al. / Journal of Molecular Structure 991 (2011) 12–17
17
[5] D. Gatteschi, O. Kahn, J. Miller, Molecular Magnetic Materials, Nato ASI Series
E198, Kluwer, Dordrecht, The Netherlands, 1991.
[6] O.M. Yaghi, G. Li, H. Li, Nature 378 (6558) (1995) 703.
[7] C.T. Chen, K.S. Suslick, Coord. Chem. Rev. 128 (1–2) (1993) 293.
[8] M. Jalali-Heravi, A.A. Khandar, I. Sheikshoaie, Spectrochim. Acta, Part A 55
(1999) 2537.
[9] L. Juhasz, Z. Dinya, S. Antus, T.E. Gunda, Tetrahedron Lett. 41 (2000) 2491.
[10] K. Balcı, S. Akyüz, Vib. Spectrosc. 48 (2008) 215.
[11] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502.
[12] J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure
Methods, second ed., Gaussian, Inc., Pittsburgh, 1996.
[13] Ö. Alver, C. Parlak, M. Sßenyel, Spectrochim. Acta A 67 (2007) 793.
[14] Ö. Alver, C. Parlak, M. Sßenyel, J. Mol. Struct. 923 (2009) 120.
[15] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
B3LYP methods and 6-31G(d) basis set. Calculated bond lengths
are, in general, slightly bigger than experimental ones which are
possibly due to the shortening of the bond lengths of the title mol-
ecule during the experimental measurements conducted at very
low temperature. However, similar generalizations are not possible
for bond-dihedral angles. In order to make a comparison with
experimental wavenumbers, we calculated root mean square devi-
ation (RMSD) based on the calculation. The following mean abso-
lute error values were found for vibrational wavenumbers:
7.80 cmÀ1 for SQM methodology and 7.63 cmÀ1 for dual scaling
factor. Any differences observed between the experimental and
the calculated wavenumbers could be due to the fact that the cal-
culations have been performed for single molecule in the gaseous
state contrary to the experimental values recorded in the presence
of intermolecular interactions. Henceforth, the assignments made
at B3LYP/6-31G(d) level of theory with only reasonable deviations
from the experimental values seem feasible.
[16] G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093.
[17] J. Baker, A.A. Jarzecki, P. Pulay, J. Phys. Chem. A102 (1998) 1412.
[18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, J.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,
J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.
Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman,
J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-
Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W.
Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03 Revision C.02, Gaussian
Inc., Pittsburgh PA, 2003.
References
[1] S.Y. Yu, S.X. Wang, Q.H. Luo, L.F. Wang, Polyhedron 12 (1993) 1093.
[2] S. Rekha, K.R. Nagasundara, Indian J. Chem. A45 (2006) 2421.
[3] A.A. Jarrahpour, M. Motamedifar, K. Pakshir, N. Hadi, M. Zarei, Molecules 9
(2004) 815.
[19] J.A. Faniran, H.F. Shurvell, Can. J. Chem. 46 (1968) 2089.
[4] P.G. Ramappa, K.B. Somasekharappa, Indian J. Chem. A33 (1994) 66.