Linker-Orientation Influence in Lipofection
A R T I C L E S
therapeutic genes they can pack inside. Consequently, an
increasing number of investigations are being reported on the
development of safe and efficacious nonviral alternatives
including cationic amphiphiles (also known as cationic trans-
fection lipids),4 cationic polymers,5 dendrimers,6 etc. Because
of their lesser immunogenic nature, robust manufacture ability
to deliver large pieces of DNA, and ease of handling and
preparation techniques, an upsurge of global interest has recently
been witnessed in developing efficacious cationic transfection
lipids for delivering genes into our body cells7 including our
own work.8
The molecular architectures of cationic amphiphiles consist
of a positively charged water-loving (hydrophilic) polar head-
group region and a nonpolar hydrophobic tail region (usually
consisting of either two long aliphatic hydrocarbon chains or a
cholesterol skeleton) often tethered together via a linker
functionality such as ether, ester, amide, amidine group, etc.
Understanding the structural parameters capable of influencing
the gene delivery efficiencies of cationic amphiphiles is essential
for rational design of efficient cationic transfection lipids. To
this end, the focus of many prior structure-activity investiga-
tions have been centered around probing the influence of each
of these three lipid structural components in modulating the gene
transfer efficacies of cationic amphiphiles. For instance, a
number of prior reports have demonstrated that the gene transfer
efficiencies of cationic amphiphiles critically depends on their
molecular architectures including hydrophobic alkyl chain
lengths,9 nature of headgroups8f,10 as well as on the nature of
linker and spacer functionalities used in covalent tethering of
the polar headgroups and the nonpolar tails of cationic
amphiphiles.8h,10,11 Recently, the in vitro gene transfer efficiency
of a cationic amphiphile with asymmetric hydrocarbon chains,
namely oleoyldecanoyl-ethylphosphatidylcholine (C18:1/C10-
EPC), has been demonstrated to be about 50-fold superior to
that of its structurally very similar saturated asymmetric
counterpart stearoyldecanoyl-ethylphosphatidylcholine (C18:0/
C10-EPC).12 Toward addressing an hitherto unexplored issue
in liposomal gene delivery, namely, the influence of linker
orientation, in the present study, we have designed and
synthesized two structurally isomeric remarkably similar cationic
amphiphiles 1 and 2 (Scheme 1) bearing the same hydrophobic
tails and the same polar headgroups connected by the same ester
linker group. The sole structural difference between the cationic
lipids 1 and 2 is the orientation of the linker functionality (ester
group). Despite having such striking structural similarities, only
lipid 1 could efficiently deliver plasmid DNA encoding â-ga-
lactosidase enzyme into a number of cultured mammalian cells
including COS-1 (SV 40 transformed African green monkey
kidney cells), CHO (Chinese hamster ovarian cells), HepG2
(Human hepatocarcinoma cells), and A549 (human lung car-
cinoma cells). In sharp contrast, lipid 2 was found to be
essentially incompetent in delivering a â-galactosidase reporter
gene into any of these cells.
(4) Karmali, P. P.; Chaudhuri, A. Med. Res. ReV. 2007, 27, 696-722 and the
references cited therein.
(5) (a) Mishra, S.; Heidel, J. D.; Webster, P.; Davis, M. E. J. Control. Rel.
2006, 116, 179-191. (b) Lynn, D. M.; Anderson, D. G.; Putman, D.;
Langer, R. J. Am. Chem. Soc. 2001, 123, 8155-8156. (c) Choi, J. S.; Joo,
D. K.; Kim, C. H.; Kim, K.; Park, J. S. J. Am. Chem. Soc. 2000, 122,
474-480.
(6) (a) Tang, M. X.; Redemann, C. T.; Szoka, F. C. Bioconjugate Chem. 1996,
7, 703-714. (b) Kukowska-Latallo, J. F.; Bielinska, A. U.; Johnson, J.;
Spinder, R.; Tomalia, D. A.; Baker, J. R. Proc. Natl. Acad. Sci. U.S.A.
1996, 93, 4897-4902. (c) Luo, D.; Haverstick, K.; Belcheva, N.; Han, E.;
Saltzman, W. M. Macromolecules 2002, 35, 3456-3462.
The lipid/DNA complexes (lipoplexes) of both lipids 1 and
2 were found to be of similar size and morphology thereby ruling
out any major role of different lipoplex sizes and shapes behind
their remarkably contrasting gene delivery profiles. Findings
in the confocal microscopic experiments in representative
HepG2 cells using lipoplexes containing fluorescently labeled
plasmid DNA revealed a significantly higher cellular uptake of
lipid 1 associated DNA than that of lipid 2 associated DNA.
Fluorescence resonance energy transfer (FRET) studies revealed
higher membrane fusogenicity of the lipid 1/cholesterol lipo-
somes compared to the biomembrane fusogenicity of lipid
2/cholesterol liposomes. Studies on the thermotropic behaviors
of pure cationic liposomes of lipids 1 and 2 using techniques
of differential scanning calorimetry as well as fluorescence
anisotropy revealed a significantly lower gel to liquid crystalline
transition temperature for the lipid 1 liposomes than that for
(7) (a) McGregor, C.; Perrin, C.; Monck, M.; Camilleri, P.; Anthony, Kirby,
J. J. Am. Chem. Soc. 2001, 123, 6215-6220. (b) Prata, C. A.; H.; Zhao,
Y.; Barthelemy, P.; Li, Y.; Luo, D.; McIntosh, T. J.; Lee, S. J.; Grinstaff,
M. W. J. Am. Chem. Soc. 2004, 126, 12196-12197. (c) Bell, P. C.;
Bergsma, I. P.; Bras, W.; Stuart, M. C. A.; Rowan, M. C.; Feiters, M. C.;
Engberts, J. B. F. N. J. Am. Chem. Soc. 2003, 125, 1551-1558. (d) Zhu,
J.; Munn, R. J.; Nantz, M. H. J. Am. Chem. Soc. 2000, 122, 2645-2646.
(e) Guenin, E.; Herve, A. C.; Floch, V.; Loisel, S.; Yaounac, J. J.; Clement,
J. C.; Ferec, C.; des Abbayas, H. Angew. Chem., Int. Ed. 2000, 39, 629-
631. (f) Ilies, M. A.; Seitz, W. A.; Ghiviriga, I.; Johnson, B. H.; Miller,
A.; Thompson, E. B.; Balaban, A. T. J. Med. Chem. 2004, 15, 3744-
3754. (g) Lee, Y.; Koo, H.; Lim, Y. B.; Lee, Y.; Mo, H.; Park, J. S. Bioorg.
Med. Chem. Lett. 2004, 14, 2637-2641. (h) Wang, L.; MacDonald, R. C.
Gene Ther. 2004, 11, 1358-1362. (i) Kirby, A. J. et al. Angew. Chem.,
Int. Ed. 2003, 42, 1448-1457. (j) Ewert, K.; Ahmed, A.; Evans, H. M.;
Schmidt, H. W.; Safinya, C. R. J. Med. Chem. 2002, 45, 5023-5029. (k)
Floch, V.; Loisel, S.; Guenin, E.; Herve, A. C.; Clement, J. C.; Yaouanc,
J. J.; des Abbayes, H.; Ferec, C. J. Med. Chem. 2000, 43, 4617-4628. (l)
Oudrhiri, N.; Vigneron, J. P.; Peuchmaur, M.; Leclerc, T.; Lehn, J.-M.;
Lehn, P. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 1651-1656. (m) Pitard,
B.; Oudrhiri, N.; Vigneron, J. P.; Hauchecorne, M.; Aguerre, O.; Toury,
R.; Airiau, M.; Ramasawmy, R.; Scherman, D.; Crouzet, J.; Lehn, J.-M.;
Lehn, P. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 2621-2626. (n) Pitard,
B.; Oudrhiri, N.; Lambert, O.; Vivien, E.; Masson, C.; Wetzer, B.;
Hauchecorne, M.; Scherman, D.; Rigaud, J. L.; Vigneron, J. P.; Lehn, J.-
M.; Lehn, P. J. Gene Med. 2001, 3, 478-487. (o) Vigneron, J. P.; Oudrhiri,
N.; Fauquet, M.; Fauguet, M.; Vergely, L.; Bradley, J.-C.; Basseleville,
M.; Lehn, P.; Lehn, J-M. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 9682-
9986.
(8) (a) Karmali, P. P.; Majeti, B. K.; Bojja, S.; Chaudhuri, A. Bioconjugate
Chem. 2006, 17, 159-171. (b) Bharat, M. K.; Karmali, P. P.; Reddy, B.
S.; Chaudhuri, A. J. Med. Chem. 2005, 48, 3784-3795. (c) Sen, J.;
Chaudhuri, A. J. Med. Chem. 2005, 48, 812-820. (d) Sen, J.; Chaudhuri,
A. Bioconjugate Chem. 2005, 16, 903-912. (e) Mahidhar, Y. V.; Rajesh,
M.; Madhavendra, S. S.; Chaudhuri, A. J. Med. Chem. 2004, 47, 5721-
5728. (f) Majeti, B. K.; Singh, R. S.; Yadav, S. K.; Reddy, S. B.;
Ramkrishna, S.; Diwan,P. V.; Madhavendra, S. S.; Chaudhuri, A. Chem.
Biol. 2004, 11, 427-437. (g) Mahidhar, Y. V.; Rajesh, M.; Chaudhuri, A.
J. Med. Chem. 2004, 47, 3938-3948. (h) Karmali, P. P.; Kumar, V. V.;
Chaudhuri, A. J. Med. Chem. 2004, 47, 2123-2132. (i) Singh, R. S.;
Gonc¸alves, C.; Sandrin, P.; Pichon, C.; Midoux, P.; Chaudhuri, A. Chem.
Biol. 2004, 11, 713-723. (j) Kumar, V. V.; Pichon, C.; Refregiers, M.;
Guerin, B.; Midoux, P.; Chaudhuri, A. Gene Ther. 2003, 10, 1206-1215.
(9) (a) Heyes, J. A.; Duvaz, D. N.; Cooper, R. G.; Springer, C. J. J. Med.
Chem. 2002, 45, 99-114. (b) Fichert, T.; Regelin, A.; Massing, U. Bioorg.
Med. Chem. Lett. 2000, 10, 787-791. (c) Byk, G.; Dubertret, C.; Escriou,
V.; Frederic, M.; Jaslin, G.; Rangara, R.; Pitard, B.; Crouzet, J.; Wils, P.;
Schwartz, B.; Scherman, D. J. Med. Chem. 1998, 41, 224-235. (d) Felgner,
J. H.; Kumar, R.; Sridhar, C. N.; Wheeler, C. J.; Tsai, Y. J.; Border, R.;
Ramsey, P.; Martin, M.; Felgner, P, L. J. Biol. Chem. 1994, 269, 2550-
2561. (e) Singh, R. S.; Mukherjee, K.; Banerjee, R.; Chaudhuri, A.; Hait,
S. K.; Moulik, S.; Ramadas, Y.; Vijayalakshmi, A.; Rao, N. M. Chem.s
Eur. J. 2002, 8, 900-909. (f) Srilakshmi, G. V.; Sen, J.; Chaudhuri, A.;
Ramdas, Y.; Rao, N. M. Biochim. Biophys. Acta (Biomembranes) 2002,
1559, 87-95.
(10) (a) Banerjee, R.; Mahidhar, Y. V.; Chaudhuri, A.; Gopal, V.; Rao, N. M.
J. Med. Chem. 2001, 44, 4176-4185. (b) Banerjee, R.; Das, P. K.;
Srilakshmi, G. V.; Chaudhuri, A.; Rao, N. M. J. Med. Chem. 1999, 42,
4292-4299.
(11) (a) Ghosh, Y. K.; Visweswariah, S. S.; Bhattacharya, S. FEBS Lett. 2000,
473, 341-344. (b) Singh, R. S.; Chaudhuri, A. FEBS Lett. 2004, 556, 86-
90. (c) Ghosh, Y. K.; Viswesaraiah, S. S.; Bhattacharya, S. Bioconjugate
Chem. 2002, 13, 378-384.
(12) Koynova, R.; Wang, Li.; MacDonald, R. C. Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 14373-14378.
9
J. AM. CHEM. SOC. VOL. 129, NO. 37, 2007 11409