B. d’A. Lucero et al. / Bioorg. Med. Chem. Lett. 16 (2006) 1010–1013
1013
13. De Oliveira, M. R. P.; Alves, T. R. A.; Pinto, A. C.;
Pereira, H. deS.; Ferreira, L. R. L.; Nissin, M.; Frugulh-
etti, I. C. deP. P.; Ferreira, V. F.; De Souza, M. C. B. V.
Nucleosides Nucleotides Nucleic Acids 2004, 23, 735.
covered with a culture medium containing either no
compounds or a different concentration of compounds.
20 h after adsorption, cells were lysed by freezing and
thawing (three times), and the supernatant consisting
of culture medium and lysed cells was obtained by cen-
trifugation at 400g for 10 min at 4 ꢁC. Virus titre was
determined by the plaque assay in Vero cells as de-
scribed above. Data were statistically analyzed by Stu-
dentÕs t test for a significance level of p < 0.05.
14. General Procedures for the syntheses of 1-[(2-hydroxy-
ethoxy)methyl]-3-carbethoxy-4(1H)quinolones 2a–l and
1-[(2-hydroxy-ethoxy)methyl]-4(1H)quinolone-3-carboxylic
acids 3a–j and 3l: The quinolone derivatives 4 were
prepared by treating the appropriate aniline with diethyl
ethoxymethylenemalonate to obtain the enamine deriva-
tives that were then cyclized in refluxing Dowtherm A.
These quinolones (3 mmol) were refluxed in bis(trimeth-
ylsilyl)trifluoroacetamide (BSTFA) (6.75 mmol) contain-
ing 1% TMSCl, in 10 mL acetonitrile, under nitrogen
atmosphere, for 4 h, followed by addition of potassium
iodide (3 mmol), 1,3-dioxolane (3 mmol) and TMSCl
(3 mmol). The resulting mixture was stirred for 24 h at
room temperature. Afterwards, it was poured into a
mixture of methyl alcohol/water (20 mL:10 mL), followed
by addition of solid sodium bicarbonate (3 mmol) and
subsequent stirring for 10 min, leading to the crude
products, which were purified by crystallization from a
ethyl alcohol/methylene chloride mixture (1:1), giving the
pure acyclonucleosides 2a–l. Reaction of these nucleo-
sides 2a–j and 2l (1 mmol) with 30 mL of 0.7 N ethanolic
sodium hydroxide solution, at room temperature, for 5 h,
followed by neutralization with Dowex 50-(acid form),
gave pure 1-[(2-hydroxy-ethoxy)methyl]-4(1H)quinolone-3-
carboxylic acids 3a–j and 3l, respectively. Analytical data
for compounds 2d and 3j are showed. NMR spectra were
recorded on a Varian Unity Plus 300 spectrometer
operating at 300.00 MHz (1H) and 75.0 MHz (13C) in
CDC13, for 2d and DMSO-d6 for 3j, at room temper-
Acknowledgments
The fellowship granted to C.R.B.G. and B.A.L. from
CNPq (Brazil) is gratefully acknowledged. M.C.B.V.S.
and V.F.F. are grateful to CNPq for their individual re-
search fellowships. This work was partially supported by
CNPq (National Council of Research from Brazil) and
FAPERJ.
Supplementary data
Supplementary data associated with this article can be
References and notes
ature:
2d—1-[(2-hydroxy-ethoxy)methyl]-3-car-
1. Bloom, D. C.; Devi-Rao, G. B.; Hill, J. M.; Stevens, J. G.;
Wagner, E. K. J. Virol. 1994, 68, 1283.
2. Kimberlin, D. W. Pediatr. Clin. North Am. 2005, 52, 837.
3. De Clercq, E. J. Med. Chem. 2005, 48, 1297.
4. Balzarini, J. Nucleosides Nucleotides 1996, 15, 821.
5. De Clercq, E. Biochem. J. 1982, 205, 1.
6. Reusser, P. Exp. Opin. Invest. Drugs 2001, 10, 1745.
7. Nichols, W. G.; Boeckh, M. J. Clin. Virol. 2000, 16, 25.
8. (a) De La Cruz, A.; Elguero, J.; Goya, P.; Martinez, A.;
Gotor, V.; Moris, F.; De Clercq, E. J. Chem. Res. Synop.
1992, 216; (b) Al-Masoudi, N. A.; Al-Soud, Y. A.;
Eherman, M.; De Clercq, E. Bioorg. Med. Chem. 2000,
8, 1407.
bethoxy-6-chloro-4(1H)quinolone 58%, mp 146–
147 ꢁC; IR (KBr) cmꢀ1 3378, 1722, 1618; 1H NMR d
8.93 (s, H2), 8.27 (d, J = 2.1 Hz, H5), 8.00 (d, J = 8.7 Hz,
0
H8), 7.95 (dd, J = 9.0 and 2.4, H7), 5.89 (s, H1 ), 4.76 (t,
J = 5, 1 Hz, OH), 4.37 (q, 0 J = 7.2 Hz, CH2), 3.64–3.68
0
(m, H3 ), 3.59–3.62 (m, H4 ), 1.42 (t, J = 7.2 Hz, CH3).
13C NMR d 172.0 (C4), 164.0 (COOEt), 149.1 (C2)ꢀ,
137.2 (C8a), 132.3 (C7), 129.9 (C6), 128.7 (C4a), 124.7
0
0
(C5), 120.2 (C8), 109.8 (C30 ), 82.4 (C1 ), 69.8 (C3 ), 59.8
0
(C4 or CH2CH3), 59.7 (C4 or CH2CH3), 14.0 (CH2CH3)
(See also Supplementary data: files a and b). Compound
3j-1-[(2-hydroxy-ethoxy)methyl]-7-chloro-4(1H)quino-
lone-3-carboxylic acid 41%, mp 123–124 ꢁC; IR 3384,
1708, 1608; 1H NMR d 14.78 (s, COOH),9.28 (s, H2),
9. Ubasawa, M.; Takashima, H.; Sekiya, K. Nucleosides
Nucleotides 1998, 17, 2241.
8.49 (t, J = 8.4 Hz, H5), 8.47 (s, H8), 7.83 (d, J = 8.7, H60),
10. (a) Deffin, G. F.; Kendall, J. D. J. Am. Chem. Soc. 1948,
70, 893; (b) Snyder, H. R.; Freier, H. E.; Kovacic, P.;
Heyningen, E. M. V. J. Am. Chem. Soc. 1947, 69, 371; (c)
Lauer, W. M.; Arnold, R. T.; Tiffany, B.; Tinker, H. J.
Am. Chem. Soc. 1946, 68, 1268; (d) Ramsey, V. G.;
Cretcher, L. H. J. Am. Chem. Soc. 1947, 69, 1659; (e)
Riegel, B.; Lappin, G. R.; Adelson, B. H. J. Am. Chem.
Soc. 1946, 68, 1264; (f) Jackson, R. I.; Albisetti, C. J., Jr.;
Dodson, R. M.; Baker, R. H. J. Am. Chem. Soc. 1946, 68,
1264; (g) Roberts, R. B. J. Am. Chem. Soc. 1948, 70, 277.
11. Da Matta, A. D.; Dos Santos, C. V. B.; Pereira, H. S.;
Frugulhetti, I. C. P. P.; De Oliveira, M. R. P.; De Souza,
M. C. B. V.; Moussatche¨, N.; Ferreira, V. F. Heteroatom
Chem. 1999, 10, 197.
0
6.07 (s, H1 ), 4.74 (t, J = 5.4 Hz, OH), 3.70–3.73 (m, H3 ),
0
3.60–3.62 (m, H4 ). 13C NMR d 173.6 (C4), 165.4
(COOH), 150.7 (C2), 140.2 (C7); 138.4 (C8a), 129.0 (C50),
127.1 (C4a), 126.4 (C6), 118.3 (C8), 110.6 (C3), 70.7 (C1 ),
0
0
60.6 (C3 ), 52.3 (C4 ). (See also Supplementary data, files
c and d).
15. Lagrotta, M. H. C.; Wigg, M. D.; Santos, M. M. G.;
Miranda, M. M. F. S.; Camara, F. P.; Couceiro, J. N. S.
S.; Costa, S. S. Phytoter. Res. 1994, 8, 358.
16. Reed, L. J.; Muench, M. A. Am. J. Hyg. 1938, 27, 493.
17. Walum, E.; Strenberg, K.; Jenssen, D. Understanding Cell
Toxicology: Principles and Practice; Ellis Howood: New
York, 1990; pp 97–111.
18. Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols,
D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. J. Virol.
Methods 1988, 20, 309.
12. Da Matta, A. D.; Bernardino, A. M. R.; Romeiro, G. A.;
De Oliveira, M. R. P.; De Souza, M. C. B. V.; Ferreira, V.
F. Nucleosides Nucleotides 1996, 15, 889.