C O M M U N I C A T I O N S
adsorption isotherm with CO2 (g) at 0 °C was observed for the
heated material, which displayed a slightly larger surface area (480
m2/g). These results indicated that the polymer retained accessible
channels and suggested that the reaction occurs down individual
columns.
In summary, we synthesized a diacetylene macrocycle that
assembled into columnar structures and underwent a thermal
reaction to give oligo- or polydiacetylenes. Both the assembled
monomer and the covalent polymer are crystalline materials that
displayed permanent porosity. The covalent polymer is a robust,
insoluble crystalline material. We are currently investigating if
assembled 1 and heat-treated 1 exhibit changes in their optoelec-
tronic properties or conductivity upon guest absorption or envi-
ronmental perturbations, as PDAs have great potential as sensing
materials.
Figure 3. Effects of heating on host 1: (a) DSC plots of 1 (heating rate 10
°C/min). Inset shows cooling (20 °C/min) and reheating. (b) PXRD patterns
of assembled 1 and heat-treated 1.
Acknowledgment. The authors gratefully acknowledge support
for this work from the NSF (CHE-0718171). We thank Christopher
Williams in the Dept. of Chem. Eng. for Raman spectra.
Supporting Information Available: Synthesis and characterization
of host 1 including crystal data (CIF). This material is available free
Figure 4. (a) Raman spectra (excitation at 632 nm) of single crystal samples
of assembled 1 (bottom) and heat-treated 1 (top). (b) CO2 gas adsorption
isotherms at 0 °C of assembled 1 and heat-treated 1.
References
(1) (a) Tang, C. W. Appl. Phys. Lett. 1986, 48, 183. (b) Sariciftci, N. S.;
Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474. (c) Hoppe,
H.; Sariciftci, N. S. J. Mater. Chem. 2004, 19, 1924.
for single crystal X-ray studies. The crystals of assembled 1 were
gently pressed to powder form and examined by PXRD (Figure
3b). The observed PXRD pattern closely matched the patterns
simulated from the crystal structure, indicating that the gently
pressed powder has a similar structure. Vigorous grinding induced
larger changes in the PXRD pattern, similar to the pattern observed
upon removal of water at 150 °C (SI). Next, the crystals were heated
(180 °C, 12 h), pressed to a powder, and examined by PXRD. They
displayed a sharp pattern by PXRD consistent with a well-ordered
crystalline structure (Figure 3b, bottom). Low angle peaks at 8.2°
and 12.0° (2θ) were observed before and after heating, suggesting
some similarities in the long-range order before and after heat
treatment.
Further evidence for reaction of 1 to a PDA was provided by
Raman spectroscopy (Figure 4a). After heating the diacetylene
absorption of 1 at ∼2081 cm-1 disappeared. Two new bands were
observed at 2050 and 1447 cm-1. The resonance enhanced
absorption of the double bonds at 1447 cm-1 is characteristic of
the ene in the poly(ene-yne) of similar PDAs.13 Solid-state magic
angle spinning 13C NMR spectroscopy also suggested efficient
conversion of the monomer to PDAs (SI).
Assuming the structure is not changed by removal of water, the
size of the channels in assembled 1 was estimated as ∼5.0 × 4.1
Å. Gas adsorption measurements with CO2 (g) at 0 °C (Figure 4b)
were used to test whether the channels of assembled 1 were
accessible and showed a type I isotherm, consistent with a
microporous material.14 The Brunauer-Emmett-Teller (BET)
method was applied to the isotherm at P/P0 between 0.012 and
0.029 to give a calculated surface area of ∼350 m2/g. The pore
volume was calculated as 0.10 cm3/g. A similar type I gas
(2) (a) Swager, T. M. Acc. Chem. Res. 1998, 31, 201. (b) Yang, J. S.; Swager,
T. M. J. Am. Chem. Soc. 1998, 120, 5321. (c) Yang, J. S.; Swager, T. M.
J. Am. Chem. Soc. 1998, 120, 11864.
(3) Smith, R. C. Macromol. Rapid Commun. 2009, 30, 2067.
(4) (a) Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem., Int. Ed. 2005, 44, 4670.
(b) Rosi, N.; Eckert, J.; Eddaoudi, M.; Vodak, D.; Kim, J.; O’Keeffe, M.;
Yaghi, O. M. Science 2003, 300, 1127.
(5) (a) Alaerts, L.; Kirschhock, C. E. A.; Maes, M.; van der Veen, M.; Finsy,
V.; Depla, A.; Martens, J. A.; Baron, G. V.; Jacobs, P. A.; Denayer, J. F. M.;
De Vos, D. E. Angew. Chem., Int. Ed. 2007, 46, 4293. (b) Wang, Q. M.;
Shen, D.; Bulow, M.; Lau, M. L.; Deng, S.; Fitch, F. R.; Lemcoff, N. O.;
Semanscin, J. Microporous Mater. 2002, 55, 217.
(6) Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.;
Kinoshita, Y.; Kitagawa, S. J. Am. Chem. Soc. 2007, 129, 2607.
(7) (a) Vriezema, D. M.; Comellas Aragones, M.; Elemans, J. A. A. W.;
Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M. Chem. ReV. 2005,
105, 1445. (b) Macgillivray, L. R.; Papefstathious, G. S.; Friscic, T.;
Hamilton, T. D.; Bucar, D.-K.; Chu, Q.; Varshney, D. B.; Georgiev, I. G.
Acc. Chem. Res. 2008, 41, 280.
(8) (a) Murray, L. J.; Dina, M.; Long, J. R. Chem. Soc. ReV. 2009, 38, 12. (b)
Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp,
J. T. Chem. Soc. ReV. 2009, 38, 1450. (c) Tranchemontagne, D. J.; Medoza-
Cortes, J. L.; O’Keeffe, M.; Yaghi, O. M. Chem. Soc. ReV. 2009, 38, 1257.
(d) Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. Angew. Chem., Int. Ed.
2009, 48, 5439. (e) Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.;
Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. Nat. Mater. 2009, 8,
831. (f) Tilford, R. W.; Mugavero, S. J.; Pellechia, P. J.; Lavigne, J. J.
AdV. Mater. 2008, 20, 2741.
(9) (a) Lauher, J. W.; Fowler, F. W.; Goroff, N. S. Acc. Chem. Res. 2008, 41,
1215. (b) Fowler, F. W.; Lauher, J. W. J. Phys. Org. Chem. 2000, 13, 850.
(10) (a) Wegner, G. Z. Naturforsch., B: Chem. Sci. 1969, B24, 824ff. (b)
Baughman, R. H. J. Polym. Sci., Part B: Polym. Phys. 1974, 1511.
(11) Zhou, Q.; Carroll, P. J.; Swager, T. M. J. Org. Chem. 1994, 59, 1294.
(12) (a) Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533–4542.
(b) Nantalaksakul, A.; Krishnamoorthy, K.; Thayumanavan, S. Macromol-
ecules 2010, 43, 37–43.
(13) (a) Exarhos, G. J.; Risen, W. M.; Baughman, R. H. J. Am. Chem. Soc.
1976, 98, 481. (b) Curtis, S. M.; Le, N.; Fowler, F. W.; Lauher, J. W.
Cryst. Growth Des. 2005, 5, 2313.
(14) (a) Groen, J. C.; Peffer, L.; Perez-Ramirez, J. A. A. Microporous
Mesoporous Mater. 2003, 60, 1.
JA9107066
9
J. AM. CHEM. SOC. VOL. 132, NO. 15, 2010 5335