delivering effect of the hydroxy group in the intermediate silyl enol ether
during work-up (ref. 5).
‡
Although the C8 stereochemistry of 19 is not certain, 19 was obtained as
the sole stereoisomer.
§
2
Although SmI has previously been used for cyclopropane opening (ref.
1
0), to our knowledge, regioselective opening of cyclopropane bearing
electron stabilizing groups on all three carbons with SmI
2
is unprece-
dented.
¶
(
(
Data for 9a: R
CH Cl ); nmax(neat)/cm 2955, 1740, 1695; d
dd, J 9.8, 4.6, 1H, H-6), 6.02 (d, J 9.8, 1H, H-7), 5.19 (d, J 4.6, 1H, H-5),
.25 (d, J 11.9, 1H, H-8), 4.22 (d, J 4.3, 1H, CHCO Me), 4.01 (d, J 11.9, 1H,
H-8), 3.76 (s, 3H, CO CH ), 3.66 (s, 3H, CO CH ), 3.61 (d, J 4.3, 1H,
CHCO Me), 0.90 (s, 9H, Si-t-Bu), 0.11 (s, 3H, Si-Me) 0.70 (s, 3H, Si-Me);
(125 MHz, CDCl ) 193.6, 171.0, 170.3, 150.7, 127.3, 91.7, 75.9, 60.3,
52.6, 52.4, 50.6, 46.6, 25.6, 18.1, 25.5, 25.7. HRMS (EI): calc. for
f
= 0.39 (silica gel, EtOAc–hexane 1+2); mp 92–94 °C
21
2
2
H 3
(500 MHz, CDCl ) 7.34
4
2
2
3
2
3
2
d
C
3
Scheme 4 Reagents and conditions: (a) Br
NI, CH
Me, THF, 0 °C ? rt, 61%; (d) SmI
9%; (e) aq. HCl, 0 °C ? rt; (f) I , PPh , imidazole, benzene, reflux, 64%
O, 50 °C, 25%.
2
, CH
2
Cl
—H
2
, 240 °C, then Et
O, rt, then Et N, rt,
, THF, 278 °C,
3
N,
+
2
40 °C ? rt; 99%; (b) NaCN, Bu
4
2
Cl
2
2
3
C
18
H
28
O
7
Si (M ): 384.1604. Found: 384.1588. Anal calc: C 56.23, H 7.34.
Found: C 56.13, H 7.43%. For 26: R = 0.53 (silica gel, EtOAc–hexane
1+1); nmax(neat)/cm 2955, 1740, 1440; d (500 MHz, CDCl ) 5.59 (br s,
1H, exo-CH N), 5.09 (s, 1H, exo-CH N), 4.99 (s, 1H, H-5), 4.23 (d, J 7.0, 1H,
CHCO Me), 3.81 (s, 3H, CO CH ), 3.79 (s, 3H, CO CH ), 3.77 (s, 3H,
), 3.66 (dd, J 7.0, 1.8, 1H, CHCO Me), 3.08 (d, J 17.4, 1H,
Me), 3.00 (d, J 17.4, 1H, CH CO Me), 2.89 (d, J 13.7, 1H, H-7),
(125 MHz, CDCl ) 171.8,
71.5, 169.4, 167.6, 141.4, 119.8, 113.3, 104.9, 80.9, 53.1, 52.8, 52.3, 45.9,
9
7
7%; (c) Me SNCHCO
2
2
2
f
21
2
3
H
3
(
2 steps); (g) Zn, Ac
2
2
2
2
2
3
2
3
CO
CH
2
1
4
3
2
CH
3
2
2
CO
2
2
2
delivered 19‡ (19% yield from 18) a highly advanced bicyclic
intermediate with the required relative stereochemistry between
the bridging carbonyl group and the hydrophobic side-chain at
C9 along with 20 (10% yield from 18).
.62 (d, J 13.7, 1H, H-7), 2.11 (s, 3H, acetyl); d
C
3
+
5.5, 44.6, 43.1, 40.9, 21.6. HRMS (EI) calc. for C18
21 9
H O Si (M ):
95.1216. Found: 395.1212.
Having established a method for the construction of the
bicyclic framework, we then focussed upon the quaternary
carbon centre adjacent to the bridgehead. To this end 9a was
first converted to 21 in 2 steps (96%) (Scheme 4). Various
attempts to produce directly the desired quaternary centre with
organometal reagents were unsuccessful, probably due to the
highly functionalized nature of 21. Only by using a sulfonium
ylide did the reaction take place without any problems,
furnishing a cyclopropane product 22. Reductive cleavage of 22
1
Review: D. M. Leonard, J. Med. Chem., 1997, 40, 2971; K. Hinterding,
D. Alonso-Díaz and H. Waldmann, Angew. Chem., Int. Ed., 1998, 37,
688.
2 T. T. Dabrah, T. Kaneko, W. Massefski, Jr. and E. B. Whipple, J. Am.
Chem. Soc., 1997, 119, 1594; T. T. Dabrah, H. J. Harwood, Jr., L. H.
Huang, N. D. Jankovich, T. Kaneko, J.-C. Li, S. Lindsey, P. M. Moshier,
T. A. Subashi, M. Therrien and P. C. Watts, J. Antibiot., 1997, 50, 1.
3
K. C. Nicolaou, P. S. Baran, Y.-L. Zhong, H.-S. Choi, W. H. Yoon, Y.
He and K. C. Fong, Angew. Chem., Int. Ed., 1999, 38, 1669; K. C.
Nicolaou, P. S. Baran, Y.-L. Zhong, K. C. Fong, Y. He, W. H. Yoon and
H.-S. Choi, Angew. Chem., Int. Ed., 1999, 38, 1676; K. C. Nicolaou,
J. K. Jung, W. H. Yoon, Y. He, Y.-L. Zhong and P. S. Baran, Angew.
Chem., Int. Ed., 2000, 39, 1829; C. Chen, M. E. Layton, S. M. Sheehan
and M. D. Shair, J. Am. Chem. Soc., 2000, 122, 7424; N. Waizumi, T.
Itoh and T. Fukuyama, J. Am. Chem. Soc., 2000, 122, 7825; Q. Tan and
S. J. Danishefsky, Angew. Chem., Int. Ed., 2000, 39, 4509.
2
with SmI proceeded with complete regioselectivity to generate
the required quaternary centre.§ Compound 23 was next
deprotected under acidic conditions followed by iodination to
give 25. Zinc reduction and protection of the resultant hydroxy
group with an acetyl group gave 26.¶
We are currently exploring methods to complete the fully
functionalized core and modify the side chains en route to
phomoidride B.
I am grateful to Professor K. Ohkata for his valuable advice
and to Dr S. Kojima for prereading of the manuscript. I am also
grateful to Drs Y. Hiraga and R. Takagi for assistance in
NMR.
4
5
J. B. Hendrickson and J. S. Farina, J. Org. Chem., 1980, 45, 3359; P. A.
Wender, K. D. Rice and M. E. Schnute, J. Am. Chem. Soc., 1997, 119,
7
897.
R. Hara, T. Furukawa, Y. Horiguchi and I. Kuwajima, J. Am. Chem.
Soc., 1996, 118, 9186.
6 J. R. Tagat, M. S. Puar and S. W. McCombie, Tetrahedron Lett., 1996,
7, 8463.
3
7
8
Y. Ito, T. Hirato and T. Saegusa, J. Org. Chem., 1978, 43, 1011.
K. C. Nicolaou, Y.-L. Zhong and P. S. Baran, J. Am. Chem. Soc., 2000,
1
22, 7596.
Notes and references
9
J. Tsuji, I. Minami and I. Shimizu, Tetrahedron Lett., 1983, 24, 1793.
†
In this reaction 16 was obtained stereoselectively at the C2 centre. While
10 R. A. Batey and W. B. Motherwell, Tetrahedron Lett., 1991, 32,
the reason for this selectivity is unclear, it may be due to the proton
6211.
Chem. Commun., 2001, 1552–1553
1553