6910 Inorganic Chemistry, Vol. 49, No. 15, 2010
Das et al.
Scheme 1. Methodologies Adopted for Synthesis of L and L1
generally have a higher affinity for Ca2þ binding sites present
in biological molecules.7 Influences that different lanthanide
ions (including Nd3þ) have in different biological processes in
living organism are reported by various researchers.8-10
Among different lanthanide ions, smaller trivalent metal ions
are reported to be the best T-channel antagonists, and the
potency for this varied inversely with ionic radii for the larger
M3þ ions.8a Lansman has shown that the strong interaction
of Ln3þs with biologically important proteins, including ion
channels and G protein-coupled receptors, occurs because
these agents share biologically important properties with the
divalent calcium (Ca2þ) cation. Their similarity to Ca2þ with
respect to ionic radii, coordination chemistry, and affinity for
the oxygen-donor groups underlies their strong interaction
with Ca2þ binding sites on a wide range of proteins.8b The
Ln3þ ions are also being used as biochemical probes to study
calcium transport in mitochondria and other organelles.10
Despite such biological and therapeutic importance, selective
sensing of lanthanide ions using chromogenic sensor mole-
cules has not grown as a research area as one would have
expected;11-13 whereas reports describing the lanthanide
recognition based on changes in the fluorescence as the
output signal are not so uncommon.11,12 Among various
lanthanide ions, Nd3þ ion is known for its biological sig-
nificance as well as its application potential in laser and
optoelectronics.14 Despite its vast importance, to date there is
no reference available in the literature on the colorimetric
detection of Nd3þ. Moreover, the close proximity of its ionic
radius with few other lanthanide ions has made the issue of
designing a selective receptor for Nd3þ further complicated
and presumably contributed to the fact that there is no report
in contemporary literature on specific recognition of the
Nd3þ ion.
In this article, we have reported a unique receptor molecule
(L1, Scheme 1) which could bind specifically to the Nd3þ ion
in the presence of all other lanthanide ions present in excess.
Studies revealed that on binding to the Nd3þ, an initial en-
hancement in the luminescence intensity for L1 in Nd3þL1
was observed due to the interrupted photoinduced electron
transfer(PET) process.15 Eventually, inthe presence of excess
Nd3þ, [Nd3þ]2L1 was formed with a red-shifted emission
maximum and a lower emission quantum yield. This was
attributed to an intramolecular charge transfer (ICT) transi-
tion in [Nd3þ]2L1. Further, a sharp change in color could be
(7) (a) Corbalan-Garcia., S.; Teruel, J. A.; Gomez-Fernandez., J. C.
Biochem. J. 1992, 287, 767–774. (b) Nayal, M.; Cera, E. D. Proc. Natl. Acad.
Sci. 1994, 91, 817. (c) Wilson, J. J.; Matsushita, O.; Okabe1, A.; Sakon., J. EMBO
J. 2003, 22, 1743. (d) Cantley., L . Trends Neurosci. 1986, 9, 1. (e) Novias, A;
Vidal, J; Franco, C; Ribera, F; Sener, A; Malaisse, W. J.; Gomis, R. Biochem.
Biophys. Res. Commun. 1997, 231, 570.
(8) (a) Mliner, B.; Enyeart, J. J. J. Physiol. 1993, 469, 639. (b) Lansman,
J. B. J. Gen. Physiol. 1990, 95, 679. (c) Catterall, W. A.; Perez-Reyes, E.; Snutch,
T. P.; Striessnig, J. Pharmacol. Rev. 2005, 57, 411. (d) Yamakage, M.; Namiki, A.
Can. J. Anaesth. 2002, 49, 151.
(9) (a) Enyeart, J. J.; Xu, L.; Enyeart, J. A. Am. J. Physiol. Endocrinol.
Metab. 2002, E1255, 282. (b) Zhang, H.; Feng, J.; Zhu, W. F.; Liu, C. Q.; Xu,
S. Q.; Shao, P. P.; Wu, D. S.; Yang, W. J.; Gu, J. H. Biol. Trace Elem. Res. 2000,
73, 1. (c) Salas, M.; Tuchweber, B.; Kovacs, K.; Garg, B. D. Pathol. B. 1976, 157,
23. (d) Nakamura, Y.; Tsumura, Y.; Tonogai, Y.; Shibata, T.; Ito, Y. Fundam. Appl.
Toxicol. 1997, 37, 106. (e) Liu, J. S.; Shen, Z. G.; Yang, W. D.; Che, J.; Xie, L. M.;
Lei, H. Y. J. Rare Earth 2002, 20, 562.
(10) (a) Boel, E.; Brady, L.; Brzozowski, A. M.; Derewenda, Z.; Dodson,
G.G.; Jensen, V. J.; Petersen, S. B.; Swift, H.; Thim, L.; Woldike, H. F.
Biochemistry 1990, 29, 6244. (b) Yamagnchi, M.; Isogai, M. Mol. Cell.
Biochem. 1993, 122, 65.
(13) (a) Liu, Z.; Jiang, L.; Lianga, Z.; Gaoa, Y. Tetrahedron 2006, 62,
3214. (b) Han, C.; Zhang, L.; Li, H. Chem. Commun. 2009, 3545. (c) Lisowski,
C. E.; Hutchison, J. E. Anal. Chem. 2009, 81, 10246. (d) Zapata, F.; Caballero, A.;
ꢀ
Espinosa, A.; Tarraga, A.; Molina, P. Eur. J. Inorg. Chem. 2010, 697.
(14) (a) Waentig, L.; Roos, P. H.; Jakubowski, N. J. Anal. At. Spectrom.
2009, 24, 924. (b) Lacan, T. F.; Jeandel, C. Earth Planet. Sci. Lett. 2005, 232,
245. (c) Bakker, B. H.; Goes, M.; Hoebe, N.; van Ramensdonk, H. J .; Verhoeven,
J. W.; Werts, M. H. V.; Hofstraat, J. W. Coord. Chem Rev. 2000, 208, 3. (d) de
Bettencourt-Dias, A. Dalton Trans. 2007, 2229. (e) Slooff, L. H.; van Blaaderen,
A.; Polman, A.; Hebbink, G. A.; Klink, S. I.; Van Veggel, F.; Reinhoudt, D. N.;
Hofstraat, J. W. J. Appl. Phys. 2002, 91, 3955. (e) Faulkner, S.; Matthews, J. L.
Comprehensive Coordination Chemistry II; Elsevier: Oxford, U.K., 2004; 9,
913-944. (f) Faulkner, S.; Pope, S. J. A.; Burton-Pye, B. P. Appl. Spectrosc. Rev.
2005, 40, 1. (g) Beeby, A.; Dickins, R. S.; Fitzgerald, S.; Govenlock, L. J.;
Maupin, C. L.; Parker, D.; Riehl, J. P.; Siligardi, G.; Williams, J. A. G. Chem.
Commun. 2000, 1183.
(11) (a) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley,
A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97,
1515. (b) Gunnlaugsson, T.; Mac Do'naill, D. A.; Parker, D. J. Am. Chem. Soc.
2001, 123, 12866. (c) Parker, D.; Dickins, R. S.; Puschmann, H.; Crossland, C.;
(15) (a) Suresh, M.; Das, A. Tetrahedron Lett. 2009, 50, 5808. (b) Bryan,
A. J.; de Silva, A. P.; de Silva, S. A.; Rupasinghe, R. A. D. D.; Sandanayake, K. R.
A. S. Biosensors 1989, 4, 169. (h) Bissell, R. A.; De Silva, A. P.; Gunaratne,
H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.; Sandanayake, K. R. A. S. Chem.
Soc. Rev. 1992, 21, 187. (c) Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.;
Lynch, P. L. M.; Maguire, G. E. M.; McCoy, C. P.; Sandanayake, K. R. A. S. Top.
Curr. Chem. 1993, 168, 223. (d) He, H.; Mortellaro, M. A.; Leiner, M. J. P.;
Young, S. T.; Fraatz, R. J.; Tusa, J. K. Anal. Chem. 2003, 75, 549. (e) He, H.;
Mortellaro, M. A.; Leiner, M. J. P.; Fraatz, R. J.; Tusa, J. K. J. Am. Chem. Soc.
2003, 125, 1468. (f) Kim, J. S.; Shon, O. J.; Rim, J. A.; Kim, S. K.; Yoon, J. J. Org.
Chem. 2002, 67, 2348. (g) Ji, H.-F.; Brown, G. M.; Dabestani, R. Chem.
Commun. 1999, 609.
ꢁ
Howard, J. A. K. Chem. Rev. 2002, 102, 1977. (d) Charbonniere, L. J.; Ziessel,
R.; Montalti, M.; Prodi, L.; Zaccheroni, N.; Boehme, C.; Wipff, G. J. Am. Chem.
Soc. 2002, 124, 7779.
(12) (a) Shavaleev, N. M.; Scopelliti, R.; Gumy, F.; Bunzli, J.-C. G. Inorg.
Chem. 2009, 48, 2908. (b) Gunnlaugsson, T.; Mac Dnaill, D. A.; Parker, D.
J. Am. Chem. Soc. 2001, 123, 12866. (c) Yamada, T.; Shinoda, S.; Sugimoto, H.;
Uenishi, J.; Tsukube, H. Inorg Chem. 2003, 42, 7932. (d) Parker, D.; Dickins,
R. S.; Puschmann, H.; Crossland, C.; Howard, J. A. K. Chem. Rev. 2002, 102,
1977. (e) Tsukube, H.; Shinoda, S. Chem. Rev. 2002, 102, 2389. (f) Hanaoka, K.;
Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2004, 126,
12470.