Journal of the Iranian Chemical Society
2. G.M. Reddy, M. Shiradkar, A.K. Chakravarthy, Curr. Org. Chem.
11, 847 (2007)
General procedure for the synthesis
of 1,4‑dihydropyridine derivatives
3. M. Inouye, T. Mio, K. Sumino, Eur. J. Clin. Pharmacol. 56, 35
(2000)
Aldehyde (1 mmol), malononitrile (1 mmol), ethyl acetoac-
etate (1 mmol), ammonium acetate (1.2 mmol), and MNPs-
AQ (3 mg) as catalyst were mixed and refuxed in H2O/EtOH
(1:1) for appropriate time. After completion of the reaction
as followed by TLC, the resulting solidifed mixture was
diluted with hot EtOH (15 mL). Then, the catalyst was sepa-
rated using an external magnet, the solvent was evaporated,
and the product was recrystallized with EtOH, and dried in
an oven at 80 °C (Table 2).
4. C.O. Wilson, J.M. Beale, J.H. Block, Wilson, Gisvold’s Textbook
of Organic Medicinal and Pharmaceutical Chemistry (Lippincott
Williams & Wilkins, Baltimore, 2011)
5. J. Briede, D. Daija, M. Stivrina, G. Duburs, Cell Biochem. Funct.
17, 89 (1999)
6. G.L. Bird, A.T. Prach, A.D. McMahon, J.A. Forrest, P.R. Mills,
B.J. Danesh, J. Hepatol. 28, 194 (1998)
7. S. Cihat, S. Rahime, Mini-Rev. Med. Chem. 6, 747 (2006)
8. A. Hantzsch, Justus Liebigs Ann. Chem. 215, 1 (1882)
9. C. Simon, T. Constantieux, J. Rodriguez, Eur. J. Org. Chem. 2004,
4957 (2004)
10. J.P. Wan, Y. Liu, RSC Adv. 2, 9763 (2012)
11. R. Surasani, D. Kalita, A.V.D. Rao, K. Yarbagi, K.B. Chan-
drasekhar, J. Fluor. Chem. 135, 91–96 (2012)
General procedure for the synthesis
of polyhydroquinoline derivatives
12. A. Kumar, R.A. Maurya, Tetrahedron 63(9), 1946–1952 (2007)
13. S.A. Kotharkar, R.R. Nagawade, D.B. Shinde, Ukr. Bioorg. Acta
1, 3–5 (2006)
A mixture of dimedone (1 mmol), ethylacetoacetate
(1 mmol), aldehyde (1 mmol), ammonium acetate
(1.2 mmol), and MNPs-AQ (30 mg) as catalyst in 5 mL
H2O/EtOH were stirred for appropriate time in refux con-
dition. After completion of the reaction as followed by TLC,
the resulting solidifed mixture was diluted with hot EtOH
(15 mL). Then, the catalyst was separated using an external
magnet, the solvent was evaporated, and the product was
recrystallized with EtOH, and dried in an oven at 80 °C
14. J. Safari, S.H. Banitaba, S.D. Khalili, J. Mol. Catal. A Chem. 335,
46–50 (2011)
15. F.M. Tamaddon, S. Moradi, J. Mol. Catal. A Chem. 370, 117–122
(2013)
16. S. Ko, C.-F. Yao, Tetrahedron 62(31), 7293–7299 (2006)
17. S. Ko, M.N.V. Sastry, C. Lin, C.F. Yao, Tetrahedron Lett. 46(34),
5771–5774 (2005)
18. J.D. Akbari, S.D. Tala, M.F. Dhaduk, H.S. Joshi, Arkivoc xii,
126–135 (2008)
19. L.M. Wang, J. Sheng, L. Zhang, J.W. Han, Z. Fan, H. Tian, C.T.
Qian, Tetrahedron 61(6), 1539–1543 (2005)
20. A.G. Sathicq, G.P. Romanelli, A. Ponzinibbio, G.T. Baronetti, H.J.
Thomas, Lett. Org. Chem. 7, 511 (2010)
21. S.-J. Ji, Z.-Q. Jiang, J. Lu, T.-P. Loh, Synlett 5, 831–835 (2004)
22. M. Li, W.-S. Guo, L.-R. Wen, Y.-F. Li, H.-Z. Yang, J. Mol. Catal.
A Chem. 258(1–2), 133–138 (2006)
Conclusion
23. R. Sridhar, P.T. Perumal, Tetrahedron 61(9), 2465–2470 (2005)
24. G. Sabitha, G.S.K.K. Reddy, C.S. Reddy, J.S. Yadav, Tetrahedron
Lett. 44(21), 4129–4131 (2003)
In this work, the 4-aminoquinaldine-functionalized silica
coated magnetic nanoparticles (MNPs-AQ) successfully
have been prepared and used as heterogeneous basic hybrid
organocatalyst for one-pot synthesis of substituted 1,4-dihy-
dropyridine and polyhydroquinoline derivatives under green
conditions. Moreover, the catalyst can be easily separated
and recovered from the reaction system by a magnet, and
can be reused for several times without signifcant miss of its
activity. In addition, the method presents various advantages
including high yields, operational simplicity, clean reaction
conditions, and minimum pollution of the environment,
which makes it an efective and attractive procedure for the
synthesis of these hydropyridine derivatives.
25. M. Lei, L. Ma, L. Hu, Synth. Commun. 41(13), 1969–1976 (2011)
26. D. Bandyopadhyay, S. Maldonado, B.K. Banik, Molecules 17,
2643–2662 (2012)
27. A. Debache, W. Ghalem, R. Boulcina, A. Belfaitah, S. Rhouati,
B. Carboni, Tetrahedron Lett. 50(37), 5248–5250 (2009)
28. D.S. Rekunge, C.K. Khatri, G.U. Chaturbhuj, Tetrahedron Lett.
58(12), 1240–1244 (2017)
29. M.A. Bodaghifard, M. Hamidinasab, N. Ahadi, Curr. Org. Chem.
22(3), 234–267 (2018)
30. L. Han, S.W. Park, D.W. Park, Energ. Environ. Sci. 2, 1286 (2009)
31. L. Han, H.J. Choi, S.J. Choi, B. Liu, D.W. Park, Green Chem. 13,
1023 (2011)
32. B. Rác, A. Molnar, P. Forgo, M. Mohai, I. Bertóti, J. Mol. Catal.
A Chem. 244, 46 (2006)
33. M.A. Nasseri, M. Sadeghzadeh, J. Chem. Sci. 125, 537 (2013)
34. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M.
Basset, Chem. Rev. 111, 3036 (2011)
Acknowledgements The authors gratefully acknowledge the fnancial
support from the Research Council of Arak University (Grant No.
95/5330).
35. S. Shylesh, V. Schünemann, W.R. Thiel, Angew. Chem. Int. Ed.
49, 3428 (2010)
36. A. Farrokhi, K. Ghodrati, I. Yavari, Catal. Commun. 63, 41 (2015)
37. J. Safari, Z. Abedi-Jazini, Z. Zarnegar, M. Sadeghi, J. Nanopart.
Res. 17, 1 (2015)
References
38. S. Rostamnia, M. Amini, J. Nanopart. Res. 16, 1 (2014)
39. Y. Leng, K. Sato, Y. Shi, J.G. Li, T. Ishigaki, T. Yoshida, H.
Kamiya, J. Phys. Chem. C 113, 16681 (2009)
1. G. Swarnalatha, G. Prasanthi, N. Sirisha, C.M. Chetty, Int. J.
ChemTech Res. 3, 75 (2011)
1 3