J. Jankowska et al. / Tetrahedron Letters 47 (2006) 5281–5284
5283
Table 2. Asymmetric aldol reaction of silyl enol ether 3 with various
In summary, we have shown that the FeCl –pybox com-
2
19
aldehydes catalyzed by FeCl
2
/hm-pybox 2 (10 mol %)
plex is an efficient chiral catalyst for asymmetric aldol
reactions in aqueous media. To the best of our knowl-
edge, this is the first example of a chiral iron complex
being active in aqueous asymmetric Mukaiyama reac-
tions. Although the stereoselectivity remains to be im-
proved further, the present work provides a useful
concept for the design of chiral catalysts composed of
iron(II) salts which function effectively in aqueous
a
b
Entry Aldehyde
Product Yield (%) ee (%) (syn)
(
syn/anti)
CHO
20
1
5a
72 (91/9)
75 (92/8)
70 (R,R)
CHO
2
5b
70
2
1
Me
media.
CHO
3
5c
5d
65 (93/7)
87 (93/7)
75
70
References and notes
MeO
1
. Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH:
Weinheim, Germany, 2004.
CHO
4
2. (a) Alcaide, B.; Almendros, P. Eur. J. Org. Chem. 2002,
1595; (b) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem.
Soc. Rev. 2004, 33, 65; (c) Machajewski, T. D.; Wong,
C.-H. Angew. Chem., Int. Ed. 2000, 39, 1352.
. (a) Mukaiyama, T.; Narasaka, K.; Banno, K. Chem. Lett.
973, 1011; (b) Mukaiyama, T. Org. React. 1982, 28, 203;
c) Mukaiyama, T.; Matsuo, J. In Modern Aldol Reactions;
Mahrwald, R., Ed.; Wiley-VCH: Weinheim, Germany,
004; p 127.
. Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie
Academic & Professional: London, 1998.
. (a) Lindstr o¨ m, U. M. Chem. Rev. 2002, 102, 2751; (b)
Sinou, D. Adv. Synth. Catal. 2002, 344, 221; (c) Li, Ch.-J.
Chem. Rev. 2005, 105, 3095.
OMe
CHO
3
5
5e
5f
79 (9/1)
72 (7/3)
72
44
23
1
(
Cl
CHO
2
6
4
5
CHO
c
7
5g
25 (8/2)
6
. (a) Manabe, K.; Kobayashi, S. Chem. Eur. J. 2002, 8,
4095; (b) Kobayashi, S.; Manabe, K. Acc. Chem. Res.
2002, 35, 209.
a
Isolated yield after silica gel chromatography.
Determined by HPLC analysis using a chiralpak AD-H column.
Reaction time 72 h.
b
c
7. Kobayashi, S.; Nagayama, S.; Busujima, T. Tetrahedron
999, 55, 8739.
1
8
. For a lead-based catalyst see: (a) Nagayama, S.; Koba-
yashi, S. J. Am. Chem. Soc. 2000, 122, 11531; for a
gallium-based catalyst see: (b) Li, H.-J.; Tian, H.-Y.; Wu,
Y.-Ch.; Chen, Y.-J.; Liu, L.; Wang, D.; Li, Ch.-J. Adv.
Synth. Catal. 2005, 347, 1247; for rare earth metal
catalysts see: (c) Hamada, T.; Manabe, K.; Ishikawa, S.;
Nagayama, S.; Shiro, M.; Kobayashi, S. J. Am. Chem.
Soc. 2003, 125, 2989; (d) Ishikawa, S.; Hamada, T.;
Manabe, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126,
12236; for a recent example of a bismuth-based catalyst
see: (e) Kobayashi, S.; Ogino, T.; Shimizu, H.; Ishikawa,
S.; Hamada, T.; Manabe, K. Org. Lett. 2005, 7, 4729.
. Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev.
responsible for the decrease in the reaction selectivity in
nondeoxygenated solvents.
Interestingly, other pybox-type ligands delivered essen-
tially different results. Application of (R,R)-diphenyl-py-
box resulted in the formation of a racemic aldol product.
On the other hand, the yield and selectivity were im-
proved by application of 10 mol % of (R,R)-hm-pybox
2
and Fe(II) chloride (entry 15). This catalytic system
was more stable and thus a far more attractive combina-
9
tion than iron(II)–pybox 1.
2
004, 104, 6217.
0. For examples of asymmetric Diels–Alder reactions, see:
a) K u¨ ndig, E. P.; Saudan, C. M.; Viton, F. Adv. Synth.
1
Finally, it was revealed that the aldol product 5a was
obtained in 72% yield with 70% ee using 10 mol % of
FeCl Æ4H O and 2 (Table 2, entry 1). It is noteworthy
(
Catal. 2001, 343, 51, and references cited therein; (b)
Kanemasa, S.; Oderaotoshi, Y.; Sakaguchi, S.-i.; Yama-
moto, H.; Tanaka, J.; Wada, E.; Curran, D. P. J. Am.
Chem. Soc. 1998, 120, 3074; (c) Corey, E. J.; Ishihara, K.
Tetrahedron Lett. 1992, 33, 6807; (d) Khiar, N.; Fernan-
dez, I.; Alcudia, F. Tetrahedron Lett. 1993, 34, 123; (e)
Matsukawa, S.; Sugama, H.; Imamoto, T. Tetrahedron
Lett. 2000, 41, 6461; for enantioselective sulfide oxidation
see: (f) Legros, J.; Bolm, C. Angew. Chem., Int. Ed. 2004,
2
2
that the same level of selectivity was attained using
FeCl Æ4H O and anhydrous FeCl . For practical rea-
2
2
2
sons, we chose for further experiments FeCl which is
easier to handle and is less prone to air oxygenation.
2
1
9
Several other substrates were subjected to this catalytic
system, and the results are summarized in Table 2. In
the case of aromatic aldehydes all the reactions provided
good yields (65–87%), diastereoselectivities (syn/anti =
4
3, 4225; for other examples see: (g) Nakamura, M.; Hirai,
A.; Nakamura, E. J. Am. Chem. Soc. 2000, 122, 978; (h)
Trost, B. M.; Lee, Ch. B. J. Am. Chem. Soc. 2001, 123,
9
1/9–93/7) and enantioselectivities for the syn isomer
3
2
671; (i) Christoffers, J.; Mann, A. Angew. Chem., Int. Ed.
000, 39, 2752; (j) Scheafer, C.; Fu, G. C. Angew. Chem.,
of 70–75%. a,b-Unsaturated cinnamaldehyde gave a rel-
atively lower ee of aldol product 5f (44%). An aliphatic
aldehyde (entry 7) was less compatible with the reaction
conditions (25% yield, 23% ee).
Int. Ed. 2005, 44, 4606.
11. Colombo, L.; Ulgheri, F.; Prati, L. Tetrahedron Lett. 1989,
30, 6435.