Page 7 of 9
ACS Catalysis
experiments, 13C NMR chemical shifts of isotope labeled
of Sn-OFs disable any contacts of Sn-OH active sites with
1
2
3
4
5
6
7
8
sugars. This material is available free of charge via the Inter-
bulk water and do not bear any proton donor themselves.
As a result, the absence of a proton donor next to the
coordination sphere of Sn makes the Sn-OFs unique solid
catalysts for the epimerization of aldoses. Hence, a reac-
tion mechanism is proposed based on the results for the
epimerization of glucose in the presence of Sn-OFs
(Scheme 3). The initial step is the interaction of the Sn-
OH group with the proton from the OH-group attached
to C-2 (a). Under elimination of water glucose undergoes
a bidentate coordination at the tin site (b). This transition
state (c) enables the carbon shift of C-3 bound to C-2
towards the formation of a new C-C bond with the initial
C-1 carbon. Finally, the formed epimeric aldose is de-
sorbed and replaced again by the initial hydroxyl group
resulting in a closed catalytic cycle. Based on the experi-
mental evidence and the feasible catalytic cycle three
peculiarities of Sn-OFs contribute to catalytic activation
of aldoses, namely (1) Lewis acidity of Sn; (2) Brønsted
basicity of the hydroxyl groups attached to Sn and (3)
highly hydrophobic environment of the Sn-OH active
sites due to aromatic organic linkers.
ACKNOWLEDGMENT
We gratefully acknowledge financial support by the German
Research Foundation (Deutsche Forschungsgemeinschaft,
DFG, RO 4757/5-1) and the excellence initiative. ID thanks
the Alexander von Humboldt Foundation and the Bayer
Foundation for the financial support. We also thank Noah
Avraham for the HPLC quantification, Heike Bergstein for
ICP OES analysis, and Karl-Josef Vaessen for TG and XRD
measurements. Regina Palkovits is gratefully acknowledged
for valuable discussions and the opportunity to carry out
independent research in her group.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) Lichtenthaler, F. W., The Key Sugars of Biomass: Availability, Present
Non-Food Uses and Potential Future Development Lines. In Biorefineries
- Industrial Processes and Products. Status Quo and Future Direstions,
Kamm, B.; Gruber, P. R.; Kamm, M., Eds. Wiley-VCH Verlag:
Weinheim, 2006; Vol. 2, pp. 3-59.
(2) Bozell, J. J.; Petersen, G. R., Green Chem. 2010, 12, 539-554.
(3) Delidovich, I.; Palkovits, R., ChemSusChem 2016, 9, 547-561.
(4) Moliner, M.; Román-Leshkov, Y.; Davis, M. E., Proc. Natl. Acad. Sci.
U.S.A. 2010, 107, 6164-6168.
(5) Gounder, R.; Davis, M. E., AIChE J. 2013, 59, 3349-3358.
(6) Gounder, R.; Davis, M. E., J. Catal. 2013, 308, 176-188.
(7) Osmundsen, C. M.; Holm, M. S.; Dahl, S.; Taarning, E., Proc. R. Soc.
A 2012, 468, 2000-2016.
(8) Bermejo-Deval, R.; Assary, R. S.; Nikolla, E.; Moliner, M.; Román-
Leshkov, Y.; Hwang, S.-J.; Palsdottir, A.; Silverman, D.; Lobo, R. F.;
Curtiss, L. A.; Davis, M. E., Proc. Natl. Acad. Sci. U.S.A. 2012, 109,
9727-9732.
(9) Bermejo-Deval, R.; Orazov, M.; Gounder, R.; Hwang, S.-J.; Davis, M.
E., ACS Catal. 2014, 4, 2288-2297.
(10) Christianson, J. R.; Caratzoulas, S.; Vlachos, D. G., ACS Catal. 2015,
5, 5256-5263.
(11) Román-Leshkov, Y.; Moliner, M.; Labinger, J. A.; Davis, M. E.,
Angew. Chem. Int. Ed. 2010, 49, 8954-8957.
(12) Rai, N.; Caratzoulas, S.; Vlachos, D. G., ACS Catal. 2013, 3, 2294-
2298.
4. CONCLUSION
In conclusion, it is shown that porous tin-organic frame-
works are versatile materials that especially outstand due
to accessible Sn-sites as catalytically active centers. The
Sn-OFs differ from conventional solid Sn-based catalysts
such as the zeolite Sn-Beta by the organic backbone re-
sulting in highly hydrophobic confined pore spaces and
isolated as well as partially hydrolyzed Sn-sites. Due to
this characteristic, Sn-OFs show a unique catalytic behav-
ior as first solid catalysts able to epimerize aldose sugars
in aqueous solutions with an outstanding selectivity. The
materials exhibit no leaching of Sn-species as proven by
filtration experiments, thus, demonstrating their hetero-
geneous character. Based on isotope exchange experi-
(13) Li, G.; Pidko, E. A.; Hensen, E. J. M., Catal. Sci. Technol. 2014, 4,
2241-2250.
(14) Bilik, V., Chem. Zvesti 1972, 26, 183-186.
13
ments with C-labeled substrates the mechanisms via the
carbon shift route is proven and a feasible catalytic cycle
is proposed. Overall, this work demonstrates the potential
of porous organic frameworks in applications that require
defined active sites. Furthermore, the applicability for
selective heterogeneous catalysis in the aqueous phase is
proven, thus, tackling one of the major challenges in the
development of tailored biorefinery schemes to selectively
convert biogenic platform chemicals.
(15) Petruš, L.; Petrušová, M.; Hricovíniová, Z., The Bílik Reaction. In
Glycoscience, Springer Berlin / Heidelberg: 2001; Vol. 215, pp 15-41.
(16) Brand, S. K.; Labinger, J. A.; Davis, M. E., ChemCatChem 2016, 8,
121-124.
(17) Brand, S. K.; Josephson, T. R.; Labinger, J. A.; Caratzoulas, S.;
Vlachos, D. G.; Davis, M. E., J. Catal. 2016, 341, 62-71.
(18) Gunther, W. R.; Wang, Y.; Ji, Y.; Michaelis, V. K.; Hunt, S. T.;
Griffin, R. G.; Román-Leshkov, Y., Nat. Commun. 2012, 3, 1109.
(19) Dobler, W.; Ernst, H.; Paust, J., US Patent US 4778531 A 1988.
(20) Takagaki, A.; Furusato, S.; Kikuchi, R.; Oyama, S. T.,
ChemSusChem 2015, 8, 3769-3772.
(21) Köckritz, A.; Kant, M.; Walter, M.; Martin, A., Appl. Catal. A Gen.
2008, 334, 112-118.
(22) Samuel, J.; Tanner, M. E., Nat. Prod. Rep. 2002, 19, 261-277.
(23) Fritsch, J.; Rose, M.; Wollmann, P.; Böhlmann, W.; Kaskel, S.,
Materials 2010, 3, 2447-2462.
(24) Wee, L.; Lescouet, T.; Fritsch, J.; Bonino, F.; Rose, M.; Sui, Z.;
Garrier, E.; Packet, D.; Bordiga, S.; Kaskel, S.; Herskowitz, M.;
Farrusseng, D.; Martens, J., Catal. Lett. 2013, 143, 356-363.
(25) Hausoul, P. J. C.; Eggenhuisen, T. M.; Nand, D.; Baldus, M.;
Weckhuysen, B. M.; Klein Gebbink, R. J. M.; Bruijnincx, P. C. A., Catal.
Sci. Technol. 2013, 3, 2571-2579.
(26) Dijkmans, J.; Gabriels, D.; Dusselier, M.; de Clippel, F.; Vanelderen,
P.; Houthoofd, K.; Malfliet, A.; Pontikes, Y.; Sels, B. F., Green Chem.
2013, 15, 2777-2785.
AUTHOR INFORMATION
Corresponding Author
* Dr. Marcus Rose (rose@itmc.rwth-aachen.de)
Notes
The authors declare no competing financial interest.
ASSOCIATED CONTENT
Supporting Information
N2 physisorption isotherms, textural properties, elemental
analysis, SEM-EDX, DRIFTS, additional data of catalytic
ACS Paragon Plus Environment